



www.icc-es.org | (800) 423-6587 | (562) 699-0543

# ICC-ES Evaluation Report ESR-5191

DIVISION: 05 00 00—METALS Section: 05 40 00—Cold-Formed Metal Framing Section 05 41 00—Structural Metal Stud Framing

DIVISION: 09 00 00—FINISHES Section: 09 22 16.13—Non-Structural Metal Stud Framing

### **REPORT HOLDER:**

### STEEL TECH USA

# **EVALUATION SUBJECT:**

# STEEL STUD FRAMING

# **1.0 EVALUATION SCOPE**

### Compliance with the following codes:

- 2021, 2018 and 2015 International Building Code® (IBC)
- 2021, 2018 and 2015 International Residential Code<sup>®</sup> (IRC)

For evaluation for compliance with codes adopted by the Los Angeles Department of Building and Safety (LADBS), see <u>ESR-5191 LABC and LARC Supplement</u>.

# **Properties evaluated:**

Structural

# 2.0 USES

Framing members with a minimum G60 coating are used as structural members as defined by the North American Standard for Cold-Formed Steel Structural Framing (AISI S240) and may also be used as nonstructural members.

Framing members with a minimum G40 coating are used only as nonstructural members as defined by the North American Standard for Cold-Formed Steel Nonstructural Framing (AISI S220).

# 3.0 DESCRIPTION

### 3.1 General:

The Steel Stud Framing is cold-formed steel studs and tracks that are factory-formed from steel coils. The studs are manufactured with and without web punchouts. Punchouts are a maximum of  $1^{1}/_{2}$  inches (38 mm) wide by 4 inches (102 mm) long as shown in Figure 1. The

A Subsidiary of the International Code Council®

Issued March 2024 This report is subject to renewal March 2025.

punchouts are located along the centerline of the webs of the studs with a minimum center-to-center spacing of 24 inches (610 mm). The minimum distance between the end of the stud and the near edge of the web punchout is 12 inches (305 mm). The tracks are manufactured without punchouts. Dimensional properties of the studs and tracks are provided in Table 1 and Figure 1.

## 3.2 Material:

The studs and tracks are cold-formed from steel coils conforming to ASTM A1003 ST33H, ASTM A1003 ST37H, ASTM A1003 ST50H, or ASTM A653 Grade 50 Class 1. The members have a minimum G60 galvanized coating for structural members and a minimum G40 galvanized coating for nonstructural members.

# 4.0 DESIGN AND INSTALLATION

#### 4.1 General:

The studs and track members and their connections must be designed and installed in accordance with IBC Section 2210, using the section properties referenced in Section 4.2.

#### 4.2 Design:

The section properties and design values, indicated in Tables 2 through 4 are for the stud and track members. All values have been determined in accordance with the applicable edition of the North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100). The allowable moments,  $M_a$ , are for use with Allowable Strength Design (ASD) and are for flexural members installed with the compression flange continuously braced. For other conditions of compression flange bracing, the allowable moment must be determined in accordance with AISI S100. The design of members must address web crippling and combined loading conditions, as applicable, in accordance with AISI S100.

For use under the IRC, the cold-formed steel studs and tracks must be limited to engineered structures, in accordance with IRC Section R301.1.3.

#### 4.3 Installation:

The studs and tracks must be installed in accordance with the applicable code, the approved plans and this report. If there is a conflict between the plans submitted for approval and this report, this report governs. The approved plans must be available at the jobsite at all times during installation.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.



# 5.0 CONDITIONS OF USE

The cold-formed steel studs and tracks described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** Minimum base steel thickness of cold-formed steel members, as delivered to the jobsite, must be at least 95 percent of the design thickness (design base-metal thickness) as specified in Table 1.
- **5.2** The construction documents prepared or reviewed by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed specifying the Steel Stud Framing must indicate compliance with this evaluation report and applicable codes and must be submitted to the code official for approval.
- **5.3** Section properties and allowable capacities of sections with punchouts (except for  $V_{anet}$  of studs) and at swagged ends (for studs) are outside the scope of this evaluation report.
- **5.4** The cold-formed steel studs and tracks are manufactured under an approved quality control program by ICC-ES.

#### 6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Cold-Formed Steel Framing Members (AC46), dated October 2019 (editorially revised December 2020).

# 7.0 IDENTIFICATION

- 7.1 The ICC-ES mark of conformity, electronic labeling, or the evaluation report number (ICC-ES ESR-5191) along with the name, registered trademark, or registered logo of the report holder (Steel Tech USA) must be included in the product label.
- 7.2 In addition, at a spacing not exceeding 96 inches (2440 mm) on-center, each cold-formed steel member must have a legible label, stamp, or embossment, indicating the report holder's name (Steel Tech USA) or initials; the section name/designation as described in Table 1, which includes the minimum base metal thickness in mils; the evaluation report number (ICC-ES ESR-5191); the minimum specified yield strength; in addition to the following:
  - For nonstructural members, each member must have the designation "NS", and a designation for the coating if other than G40.
  - For structural members, each member must have the designation of coating (minimum G60).
- 7.3 The report holder's contact information is the following:

STEEL TECH USA 500 HUFFINES BOULEVARD LEWISVILLE, TEXAS 75056 (646) 270-4305 www.steeltechusa.com info@steeltechusa.com

#### Definitions of symbols for use with Tables 2 through 4:

- F<sub>y</sub>: Yield stress
- K<sub>φ</sub> Distortional buckling moment, M<sub>ad</sub>, is calculated without the beneficial effect of sheathing to rotational stiffness, K<sub>φ</sub> = 0.

Gross Properties (based on full section away from end swage and away from punchouts):

- Area: The cross-sectional area of the full unreduced cross-section of the member.
- Wt: The weight per foot of the full unreduced cross-section of the member.
- $I_{xx}$ : Moment of inertia of the gross section about the strong axis (X-X).
- R<sub>x</sub>: Radius of gyration of the gross section about the strong axis (X-X).
- $S_{xx}$ : Gross section-modulus about the strong axis (X-X).
- I<sub>yy</sub>: Moment of inertia of the gross section about the weak axis (Y-Y).
- S<sub>yy</sub>: Gross section-modulus about the weak axis (Y-Y).
- Ry: Radius of gyration of the gross section about the weak axis (Y-Y).

#### Effective Properties (based on full section away from end swage and away from punchouts, except Va(net)):

- Ixe: Effective moment of inertia about the strong axis (X-X) for deflection calculations.
- Sxe: Effective section modulus about the strong axis (X-X) based on local buckling.
- Mai: Allowable bending moment based on local buckling about the strong axis (X-X).
- $M_{ad}$ : Allowable distortional bending moment based on  $k_{\Phi} = 0$ .
- V<sub>a</sub>: Allowable strong axis shear away from punchout.
- $V_{a(net)} \hspace{0.5cm} \text{Allowable strong axis shear at punchout.}$
- Lu: Critical unbraced length for lateral-torsional buckling. Members are considered fully braced when unbraced length is less than Lu. If the unbraced length exceeds Lu, then lateral-torsional buckling must be evaluated independently.

#### Torsional and Other Properties (based on full section away from end swage and away from punchouts)

- J: St. Venant Torsional Constant
- C<sub>w</sub>: Torsional warping constant.
- m: Distance from shear center to mid-plane of web.
- $x_{o}$ : Distance from the shear center to the centroid along the principal X-axis.
- ro: Polar radius of gyration about shear center.
- β: Torsional flexural constant =  $1 (x_0/r_0)^2$

| TABLE 1—COLD-FORMED STEEL | FRAMING MEMBERS DESIGNATIONS AND DIMENSIONS |
|---------------------------|---------------------------------------------|
|                           |                                             |

| MEMBER DESIGNATION <sup>1</sup> |            | WEB                         | FLANGE                      | LIP <sup>4</sup> |                             | UNCOATED STEEL THICKNESS |                        |                      |  |  |  |
|---------------------------------|------------|-----------------------------|-----------------------------|------------------|-----------------------------|--------------------------|------------------------|----------------------|--|--|--|
| Studs                           | Tracks     | DEPTH <sup>2</sup><br>(in.) | WIDTH <sup>3</sup><br>(in.) | (in.)            | INSIDE BEND<br>RADIUS (in.) | Designation<br>(mils)    | Design Thick.<br>(in.) | Min. Thick.<br>(in.) |  |  |  |
| 362S162-33                      | 362T162-33 | 3.625                       | 1.625                       | 0.50             | 0.0629                      | 33                       | 0.0346                 | 0.0329               |  |  |  |
| 362S162-43                      | 362T162-43 | 3.625                       | 1.625                       | 0.50             | 0.0629                      | 43                       | 0.0451                 | 0.0428               |  |  |  |
| 362S162-54                      | 362T162-54 | 3.625                       | 1.625                       | 0.50             | 0.0629                      | 54                       | 0.0566                 | 0.0538               |  |  |  |
| 362S200-33                      | 362T200-33 | 3.625                       | 2.0                         | 0.625            | 0.0629                      | 33                       | 0.0346                 | 0.0329               |  |  |  |
| 362S200-43                      | 362T200-43 | 3.625                       | 2.0                         | 0.625            | 0.0629                      | 43                       | 0.0451                 | 0.0428               |  |  |  |
| 362S200-54                      | 362T200-54 | 3.625                       | 2.0                         | 0.625            | 0.0629                      | 54                       | 0.0566                 | 0.0538               |  |  |  |
| 600S162-33                      | 600T162-33 | 6.0                         | 1.625                       | 0.50             | 0.0787                      | 33                       | 0.0346                 | 0.0329               |  |  |  |
| 600S162-43                      | 600T162-43 | 6.0                         | 1.625                       | 0.50             | 0.0787                      | 43                       | 0.0451                 | 0.0428               |  |  |  |
| 600S162-54                      | 600T162-54 | 6.0                         | 1.625                       | 0.50             | 0.0787                      | 54                       | 0.0566                 | 0.0538               |  |  |  |
| 600S162-68                      | 600T162-68 | 6.0                         | 1.625                       | 0.50             | 0.0787                      | 68                       | 0.0713                 | 0.0677               |  |  |  |
| 600S200-33                      | 600T200-33 | 6.0                         | 2.0                         | 0.625            | 0.0787                      | 33                       | 0.0346                 | 0.0329               |  |  |  |
| 600S200-43                      | 600T200-43 | 6.0                         | 2.0                         | 0.625            | 0.0787                      | 43                       | 0.0451                 | 0.0428               |  |  |  |
| 600S200-54                      | 600T200-54 | 6.0                         | 2.0                         | 0.625            | 0.0787                      | 54                       | 0.0566                 | 0.0538               |  |  |  |
| 600S200-68                      | 600T200-68 | 6.0                         | 2.0                         | 0.625            | 0.0787                      | 68                       | 0.0713                 | 0.0677               |  |  |  |

For SI units: 1 inch = 25.4 mm.

<sup>1</sup>Member designation identification provides nominal dimensions as shown in the example below:

Example: 362S162-33; 362 = 3.625-inch web depth (measured from outside face to outside face of flanges), S = stud, 162 = 1.625-inch flange width, and 33 = thickness designation of 33 mils. For tracks, "S" is replaced with "T".

<sup>2</sup>Web depth for both studs and track sections is measured from outside of flange to outside of flange.

<sup>3</sup> Track flange width, where the studs are fitted as shown in Figure 1, equals to the provided values after subtracting the inside bend radius and design thickness. Example: Flange width of 362T162-33 = 1.625 - 0.0629 - 0.0346 = 1.528 inches.

<sup>4</sup> Track flange stiffeners (lips) are removed at stud locations; studs are swaged to fit tightly in track.

# TABLE 2-GROSS AND TORSIONAL SECTION PROPERTIES

|            | GROSS SECTION PROPERTIES |        |                 |                  |                |                 |                  |          | TORSIONAL SECTION PROPERTIES |        |          |          |           |                    |        |  |
|------------|--------------------------|--------|-----------------|------------------|----------------|-----------------|------------------|----------|------------------------------|--------|----------|----------|-----------|--------------------|--------|--|
| MEMBER     | Area                     | Wt     | I <sub>xx</sub> | S <sub>xx</sub>  | R <sub>x</sub> | l <sub>yy</sub> | S <sub>yy</sub>  | Ry       | Jx1000                       | Cw     | ro       | Xo       | m         | j                  | β      |  |
|            | in. <sup>2</sup>         | lb/ft  | in.⁴            | in. <sup>3</sup> | in.            | in.⁴            | in. <sup>3</sup> | in.      | in.4                         | in.6   | in.      | in.      | in.       | in.                | Ч      |  |
| STUDS (a   | -                        |        | 1               |                  | 1              | -               |                  |          |                              |        | S (at se | ctions w | vith full | lips) <sup>1</sup> |        |  |
| 362S162-33 | 0.2629                   | 0.8947 | 0.5539          | 0.3056           | 1.4515         | 0.0999          | 0.0919           | 0.6165   | 0.1049                       | 0.2969 | 2.050    | -1.3092  | 0.7887    | 2.109              | 0.5920 |  |
| 362S162-43 | 0.3404                   |        | 0.7120          |                  | 1.4463         | 0.1273          | 0.1171           | 0.6115   | 0.2308                       | 0.3759 | 2.037    | -1.2971  | 0.7819    | 2.103              | 0.5944 |  |
| 362S162-54 | 0.4240                   | 1.4429 | 0.8800          | 0.4855           | 1.4405         | 0.1558          | 0.1433           | 0.6061   | 0.4528                       | 0.4569 | 2.023    | -1.2839  | 0.7745    | 2.096              | 0.5971 |  |
| 362S200-33 | 0.2975                   | 1.0124 | 0.6511          | 0.3592           | 1.4793         | 0.1777          | 0.1398           | 0.7729   | 0.1187                       | 0.5772 | 2.412    | -1.7418  | 1.0305    | 2.360              | 0.4787 |  |
| 362S200-43 | 0.3855                   | 1.3118 | 0.8381          | 0.4624           | 1.4744         | 0.2274          | 0.1788           | 0.7680   | 0.2614                       | 0.7337 | 2.399    | -1.7294  | 1.0236    | 2.351              | 0.4803 |  |
| 362S200-54 | 0.4806                   | 1.6355 | 1.0372          | 0.5723           | 1.4690         | 0.2796          | 0.2199           | 0.7627   | 0.5133                       | 0.8955 | 2.384    | -1.7159  | 1.0160    | 2.341              | 0.4820 |  |
| 600S162-33 | 0.3442                   | 1.1711 | 1.7920          | 0.5973           | 2.2819         | 0.1161          | 0.0958           | 0.5808   | 0.1373                       | 0.8615 | 2.587    | -1.0722  | 0.6767    | 3.351              | 0.8283 |  |
| 600S162-43 | 0.4463                   | 1.5187 | 2.3111          | 0.7704           | 2.2756         | 0.1479          | 0.1221           | 0.5757   | 03026                        | 1.0952 | 2.576    | -1.0612  | 0.6704    | 3.360              | 0.8303 |  |
| 600S162-54 | 0.5569                   | 1.8951 | 2.8666          | 0.9555           | 2.2687         | 0.1810          | 0.1495           | 0.5701   | 0.5947                       | 1.3372 | 2.564    | -1.0491  | 0.6634    | 3.371              | 0.8325 |  |
| 600S162-68 | 0.6965                   | 2.3700 | 3.5569          | 1.1856           | 2.2598         | 0.2207          | 0.1824           | 0.5629   | 1.1803                       | 1.6259 | 2.548    | -1.0338  | 0.6545    | 3.385              | 0.8354 |  |
| 600S200-33 | 0.3788                   | 1.2888 | 2.0743          | 0.6914           | 2.3402         | 0.2092          | 0.1466           | 0.7431   | 0.1511                       | 1.5934 | 2.855    | -1.4570  | 0.9007    | 3.253              | 0.7396 |  |
| 600S200-43 | 0.4914                   | 1.6721 | 2.6780          | 0.8927           | 2.3345         | 0.2677          | 0.1877           | 0.7381   | 0.3332                       | 2.0332 | 2.843    | -1.4455  | 0.8942    | 3.253              | 0.7415 |  |
| 600S200-54 | 0.6135                   | 2.0877 | 3.3256          | 1.1085           | 2.3282         | 0.3292          | 0.2309           | 0.7325   | 0.6552                       | 2.4925 | 2.830    | -1.4329  | 0.8870    | 3.254              | 0.7437 |  |
| 600S200-68 | 0.7678                   | 2.6126 | 4.1327          | 1.3776           | 2.3201         | 0.4041          | 0.2835           | 0.7255   | 1.3011                       | 3.0466 | 2.814    | -1.4168  | 0.8778    | 3.255              | 0.7464 |  |
|            |                          |        | TRA             | CKS (at          | section        | ns where        | e the lip        | is cut t | o fit the                    | studs) | 2        |          |           |                    |        |  |
| 362T162-33 | 0.2264                   | 0.7702 | 0.4625          | 0.2552           | 1.4295         | 0.0519          | 0.0447           | 0.4789   | 0.0903                       | 0.1185 | 1.750    | -0.8896  | 0.5408    | 2.009              | 0.7417 |  |
| 362T162-43 | 0.2929                   | 0.9968 | 0.5937          | 0.3275           | 1.4236         | 0.0657          | 0.0571           | 0.4735   | 0.1986                       | 0.1492 | 1.738    | -0.8780  | 0.5340    | 2.000              | 0.7449 |  |
| 362T162-54 | 0.3648                   | 1.2412 | 0.7324          | 0.4041           | 1.4170         | 0.0798          | 0.0701           | 0.4676   | 0.3895                       | 0.1802 | 1.725    | -0.8654  | 0.5266    | 1.991              | 0.7483 |  |
| 362T200-33 | 0.2264                   | 0.7702 | 0.4625          | 0.2552           | 1.4295         | 0.0519          | 0.0447           | 0.4789   | 0.0903                       | 0.1185 | 1.750    | -0.8896  | 0.5408    | 2.009              | 0.7417 |  |
| 362T200-43 | 0.2929                   | 0.9968 | 0.5937          | 0.3275           | 1.4236         | 0.0657          | 0.0571           | 0.4735   | 0.1986                       | 0.1492 | 1.738    | -0.8780  | 0.5340    | 2.000              | 0.7449 |  |
| 362T200-54 | 0.3648                   | 1.2412 | 0.7324          | 0.4041           | 1.4170         | 0.0798          | 0.0701           | 0.4676   | 0.3895                       | 0.1802 | 1.725    | -0.8654  | 0.5266    | 1.991              | 0.7483 |  |
| 600T162-33 | 0.3070                   | 1.0445 | 1.5069          | 0.5023           | 2.2156         | 0.0575          | 0.0463           | 0.4328   | 0. 1225                      | 0.3764 | 2.364    | -0.7006  | 0.4487    | 3.651              | 0.9122 |  |
| 600T162-43 | 0.3980                   | 1.3544 | 1.9414          | 0.6471           | 2.2086         | 0.0727          | 0.0591           | 0.4275   | 0. 2699                      | 0.4750 | 2.353    | -0.6903  | 0.4424    | 3.659              | 0.9139 |  |
| 600T162-54 | 0.4966                   | 1.6899 | 2.4054          |                  |                | 0.0883          | 0.0725           | 0.4217   | 0.5303                       | 0.5751 | 2.341    | -0.6791  | 0.4355    | 3.667              | 0.9159 |  |
| 600T162-68 |                          |        | 2.9804          |                  |                |                 |                  | 0.4142   |                              | 0.6916 | 2.327    | -0.6648  |           | 3.679              | 0.9184 |  |
| 600T200-33 | 0.3070                   | 1.0445 |                 |                  |                | 0.0575          |                  | -        |                              | 0.3764 | 2.364    | -0.7006  |           | 3.651              | 0.9122 |  |
| 600T200-43 | 0.3980                   | 1.3544 | 1.9414          |                  | 2.2086         |                 |                  |          |                              | 0.4750 | 2.353    | -0.6903  |           | 3.659              | 0.9139 |  |
| 600T200-54 | 0.4966                   |        | 2.4054          |                  |                |                 | 0.0725           |          |                              | 0.5751 |          | -0.6791  | -         | 3.667              | 0.9159 |  |
| 600T200-68 |                          |        | 2.9804          |                  |                | 0.1065          |                  | -        |                              | 0.6916 | 2.327    | -0.6648  |           | 3.679              | 0.9184 |  |
| 0001200-00 | 0.0210                   | 2.1130 | 2.9004          | 0.9900           | 2.1900         | 0.1005          | 0.0007           | 0.4142   | 1.0023                       | 0.0910 | 2.321    | -0.0040  | 0.4207    | 5.019              | 0.9104 |  |

For **SI** units: 1 inch = 25.4 mm

<sup>1</sup> Tabulated properties are based on the full un-reduced cross section, away from punch-outs (for studs), swagged ends (for studs), and cut lips (for tracks). <sup>2</sup> See track lip cut in Figure 1.

|             | ST33H STEEL (F <sub>y</sub> = 33 ksi & F <sub>u</sub> = 45 ksi)                                                        |                  |                              |                              |         |                   |           |                              | ST37H STEEL (F <sub>y</sub> = 37 ksi & F <sub>u</sub> = 52 ksi) |                              |                              |      |                   |       |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|------------------------------|---------|-------------------|-----------|------------------------------|-----------------------------------------------------------------|------------------------------|------------------------------|------|-------------------|-------|--|--|
| MEMBER      | I <sub>xe</sub> <sup>2</sup>                                                                                           | S <sub>xe</sub>  | M <sub>al</sub> <sup>3</sup> | M <sub>ad</sub> <sup>3</sup> | Va      | V <sub>anet</sub> | Lu        | I <sub>xe</sub> <sup>2</sup> | S <sub>xe</sub>                                                 | M <sub>al</sub> <sup>3</sup> | M <sub>ad</sub> <sup>3</sup> | Va   | V <sub>anet</sub> | Lu    |  |  |
|             | in.4                                                                                                                   | in. <sup>3</sup> | in-k                         | in-k                         | lb      | lb                | in.       | in.4                         | in. <sup>3</sup>                                                | in-k                         | in-k                         | lb   | lb                | in.   |  |  |
| STUDS (away | STUDS (away from punched-out sections and away from swagged ends) and TRACKS (at sections with full lips) <sup>1</sup> |                  |                              |                              |         |                   |           |                              |                                                                 |                              |                              |      |                   |       |  |  |
| 362S162-33  | 0.5412                                                                                                                 | 0.2943           | 5.816                        | 5.456                        | 1024    | 529               | 42.32     | 0.5343                       | 0.2882                                                          | 6.385                        | 5.899                        | 1075 | 555               | 39.95 |  |  |
| 362S162-43  | 0.7119                                                                                                                 | 0.3928           | 7.762                        | 7.643                        | 1740    | 682               | 42.00     | 0.7084                       | 0.3892                                                          | 8.622                        | 8.302                        | 1842 | 722               | 39.70 |  |  |
| 362S162-54  | 0.8800                                                                                                                 | 0.4855           | 9.594                        | 9.594                        | 2372    | 732               | 41.47     | 0.8800                       | 0.4855                                                          | 10.757                       | 10.757                       | 2659 | 820               | 39.16 |  |  |
| 362S200-33  | 0.6065                                                                                                                 | 0.3199           | 6.321                        | 6.211                        | 1024    | 529               | 51.80     | 0.5984                       | 0.3130                                                          | 6.934                        | 6.706                        | 1075 | 555               | 48.88 |  |  |
| 362S200-43  | 0.8240                                                                                                                 | 0.4496           | 8.885                        | 8.726                        | 1740    | 682               | 51.91     | 0.8132                       | 0.4397                                                          | 9.743                        | 9.460                        | 1842 | 722               | 48.84 |  |  |
| 362S200-54  | 1.0373                                                                                                                 | 0.5723           | 11.308                       | 11.308                       | 2372    | 732               | 51.81     | 1.0366                       | 0.5715                                                          | 12.663                       | 12.571                       | 2659 | 820               | 48.91 |  |  |
| 600S162-33  | 1.7515                                                                                                                 | 0.5763           | 11.387                       | 9.462                        | 638     | 638               | 41.77     | 1.7071                       | 0.5512                                                          | 12.212                       | 10.184                       | 638  | 638               | 38.45 |  |  |
| 600S162-43  | 2.3102                                                                                                                 | 0.7701           | 15.217                       | 13.531                       | 1419    | 1239              | 41.26     | 2.2968                       | 0.7626                                                          | 16.897                       | 14.617                       | 1419 | 1239              | 38.91 |  |  |
| 600S162-54  | 2.8658                                                                                                                 | 0.9553           | 18.877                       | 18.221                       | 2740    | 1896              | 40.57     | 2.8658                       | 0.9553                                                          | 21.165                       | 19.766                       | 2816 | 1948              | 38.31 |  |  |
| 600S162-68  | 3.5568                                                                                                                 | 1.1855           | 23.426                       | 23.429                       | 4348    | 2371              | 39.67     | 3.5568                       | 1.1855                                                          | 26.266                       | 26.269                       | 4604 | 2511              | 37.46 |  |  |
| 600S200-33  | 1.9428                                                                                                                 | 0.6221           | 12.293                       | 10.760                       | 638     | 638               | 51.55     | 1.8901                       | 0.5930                                                          | 13.138                       | 11.575                       | 638  | 638               | 47.24 |  |  |
| 600S200-43  | 2.6329                                                                                                                 | 0.8686           | 17.163                       | 15.362                       | 1419    | 1239              | 51.90     | 2.6000                       | 0.8511                                                          | 18.856                       | 16.581                       | 1419 | 1239              | 48.83 |  |  |
| 600S200-54  | 3.3248                                                                                                                 | 1.1083           | 21.900                       | 20.672                       | 2740    | 1896              | 51.65     | 3.3211                       | 1.1061                                                          | 24.507                       | 22.396                       | 2816 | 1948              | 48.74 |  |  |
| 600S200-68  | 4.1326                                                                                                                 | 1.3775           | 27.219                       | 27.222                       | 4348    | 2371              | 50.90     | 4.1326                       | 1.3775                                                          | 30.519                       | 30.107                       | 4604 | 2511              | 48.07 |  |  |
|             |                                                                                                                        | Т                | RACKS                        | (at sect                     | ions wh | ere the           | lip is cu | it to fit th                 | ne studs                                                        | )                            |                              |      |                   |       |  |  |
| 362T162-33  | 0.3536                                                                                                                 | 0.1700           | 3.359                        |                              | 1024    |                   |           | 0.3493                       | 0.1671                                                          | 3.702                        |                              | 1075 |                   |       |  |  |
| 362T162-43  | 0.4840                                                                                                                 | 0.2395           | 4.732                        |                              | 1740    |                   |           | 0.4777                       | 0.2349                                                          | 5.205                        |                              | 1842 |                   |       |  |  |
| 362T162-54  | 0.6331                                                                                                                 | 0.3222           | 6.366                        |                              | 2372    |                   |           | 0.6246                       | 0.3158                                                          | 6.996                        |                              | 2659 |                   |       |  |  |
| 362T200-33  | 0.3536                                                                                                                 | 0.1700           | 3.359                        |                              | 1024    |                   |           | 0.3493                       | 0.1671                                                          | 3.702                        |                              | 1075 |                   |       |  |  |
| 362T200-43  | 0.4840                                                                                                                 | 0.2395           | 4.732                        |                              | 1740    |                   |           | 0.4777                       | 0.2349                                                          | 5.205                        |                              | 1842 |                   |       |  |  |
| 362T200-54  | 0.6331                                                                                                                 | 0.3222           | 6.366                        |                              | 2372    |                   |           | 0.6246                       | 0.3158                                                          | 6.996                        |                              | 2659 |                   |       |  |  |
| 600T162-33  | 1.1396                                                                                                                 | 0.3287           | 6.494                        |                              | 638     |                   |           | 1.0985                       | 0.3102                                                          | 6.874                        |                              | 638  |                   |       |  |  |
| 600T162-43  | 1.6603                                                                                                                 | 0.5130           | 10.137                       |                              | 1419    |                   |           | 1.6442                       | 0.5059                                                          | 11.208                       | 1                            | 1419 |                   |       |  |  |
| 600T162-54  | 2.0429                                                                                                                 | 0.6085           | 12.024                       |                              | 2740    |                   |           | 2.0073                       | 0.5910                                                          | 13.095                       |                              | 2816 |                   |       |  |  |
| 600T162-68  | 2.6974                                                                                                                 | 0.8362           | 16.524                       |                              | 4348    |                   |           | 2.6669                       | 0.8219                                                          | 18.209                       | 1                            | 4604 | 1                 |       |  |  |
| 600T200-33  | 1.1396                                                                                                                 | 0.3287           | 6.494                        |                              | 638     |                   |           | 1.0985                       | 0.3102                                                          | 6.874                        | ]                            | 638  | ]                 |       |  |  |
| 600T200-43  | 1.6603                                                                                                                 | 0.5130           | 10.137                       |                              | 1419    |                   |           | 1.6442                       | 0.5059                                                          | 11.208                       | 1                            | 1419 | 1                 |       |  |  |
| 600T200-54  | 2.0429                                                                                                                 | 0.6085           | 12.024                       |                              | 2740    |                   |           | 2.0073                       | 0.5910                                                          | 13.095                       | 1                            | 2816 | 1                 |       |  |  |
| 600T200-68  | 2.6974                                                                                                                 | 0.8362           | 16.524                       |                              | 4348    |                   |           | 2.6669                       | 0.8219                                                          | 18.209                       | 1                            | 4604 | 1                 |       |  |  |

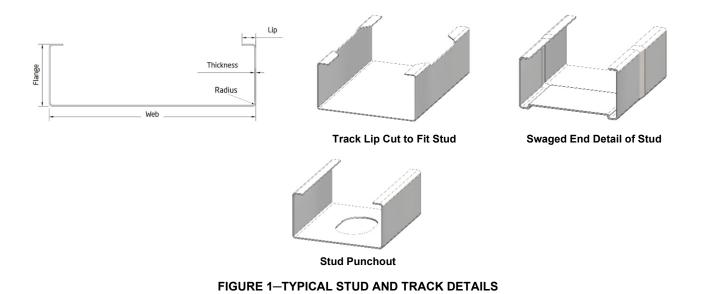
### TABLE 3-EFFECTIVE SECTION PROPERTIES FOR GRADE ST33H AND ST37H STEEL

For SI units: 1 inch = 25.4 mm; 1 in-k = 112.98 N-m; 1 lb = 4.448 N; 1 ksi = 6.895 MPa.

<sup>1</sup>All properties and design values are based on full-unreduced cross section of the member, away from the swaged end and web punchouts (except for Vanet) for studs, and away from cut lip for tracks (See Figure 1). Vanet was calculated at a stud section where the punchout exists.

<sup>2</sup> For deflection calculations, use the effective moment of inertia, Ixe.

<sup>3</sup> Strength increase from cold work of forming was not considered in the calculation of capacities.


# TABLE 4-EFFECTIVE SECTION PROPERTIES FOR GRADE 50 OR ST50H STEEL

| ST50H OR GRADE 50 STEEL ( $F_y$ = 50 ksi & $F_u$ = 65 ksi) |                              |                  |                              |                                                     |      |                   |       |            |                              |                  |                              |      |
|------------------------------------------------------------|------------------------------|------------------|------------------------------|-----------------------------------------------------|------|-------------------|-------|------------|------------------------------|------------------|------------------------------|------|
| STUDS (away fro                                            |                              |                  | ections a<br>ections v       | TRACKS (at sections where the lip is cut to fit the |      |                   |       |            |                              |                  |                              |      |
|                                                            | studs)                       |                  |                              |                                                     |      |                   |       |            |                              |                  |                              |      |
| Member                                                     | I <sub>xe</sub> <sup>2</sup> | S <sub>xe</sub>  | M <sub>al</sub> <sup>3</sup> | M <sub>ad</sub> <sup>3</sup>                        | Va   | V <sub>anet</sub> | Lu    | Member     | I <sub>xe</sub> <sup>2</sup> | S <sub>xe</sub>  | M <sub>al</sub> <sup>3</sup> | Va   |
| Weinbei                                                    | in.⁴                         | in. <sup>3</sup> | in-k                         | in-k                                                | lb   | lb                | in.   | Weinbei    | in.⁴                         | in. <sup>3</sup> | in-k                         | lb   |
| 362S162-33                                                 | 0.5139                       | 0.2705           | 8.097                        | 7.191                                               | 1075 | 555               | 34.47 | 362T162-33 | 0.3387                       | 0.1600           | 4.791                        | 1075 |
| 362S162-43                                                 | 0.6695                       | 0.3541           | 10.602                       | 10.228                                              | 2141 | 839               | 34.21 | 362T162-43 | 0.4619                       | 0.2239           | 6.702                        | 2141 |
| 362S162-54                                                 | 0.8656                       | 0.4711           | 14.105                       | 13.706                                              | 3372 | 1041              | 33.81 | 362T162-54 | 0.6031                       | 0.2999           | 8.979                        | 3372 |
| 362S200-33                                                 | 0.5768                       | 0.2950           | 8.833                        | 8.150                                               | 1075 | 555               | 42.07 | 362T200-33 | 0.3387                       | 0.1600           | 4.791                        | 1075 |
| 362S200-43                                                 | 0.7813                       | 0.4114           | 12.319                       | 11.605                                              | 2141 | 839               | 41.73 | 362T200-43 | 0.4619                       | 0.2239           | 6.702                        | 2141 |
| 362S200-54                                                 | 0.9797                       | 0.5182           | 15.514                       | 15.581                                              | 3372 | 1041              | 41.43 | 362T200-54 | 0.6031                       | 0.2999           | 8.979                        | 3372 |
| 600S162-33                                                 | 1.5772                       | 0.4810           | 14.403                       | 12.295                                              | 638  | 638               | 30.24 | 600T162-33 | 1.0007                       | 0.2687           | 8.044                        | 638  |
| 600S162-43                                                 | 2.1867                       | 0.7054           | 21.120                       | 17.792                                              | 1419 | 1239              | 33.27 | 600T162-43 | 1.5378                       | 0.4555           | 13.638                       | 1419 |
| 600S162-54                                                 | 2.8175                       | 0.9287           | 27.805                       | 24.282                                              | 2816 | 1948              | 32.83 | 600T162-54 | 1.9086                       | 0.5446           | 16.305                       | 2816 |
| 600S162-68                                                 | 3.5568                       | 1.1855           | 35.495                       | 33.046                                              | 5352 | 2919              | 32.23 | 600T162-68 | 2.5661                       | 0.7711           | 23.087                       | 5352 |
| 600S200-33                                                 | 1.7596                       | 0.5247           | 15.709                       | 13.958                                              | 638  | 638               | 37.52 | 600T200-33 | 1.0007                       | 0.2687           | 8.044                        | 638  |
| 600S200-43                                                 | 2.5102                       | 0.8049           | 24.098                       | 20.144                                              | 1419 | 1239              | 41.71 | 600T200-43 | 1.5378                       | 0.4555           | 13.638                       | 1419 |
| 600S200-54                                                 | 3.1519                       | 1.0153           | 30.398                       | 27.434                                              | 2816 | 1948              | 40.98 | 600T200-54 | 1.9086                       | 0.5446           | 16.305                       | 2816 |
| 600S200-68                                                 | 4.0776                       | 1.3460           | 40.299                       | 37.283                                              | 5352 | 2919              | 40.98 | 600T200-68 | 2.5661                       | 0.7711           | 23.087                       | 5352 |

For SI units: 1 inch = 25.4 mm; 1 in-k = 112.98 N-m; 1 lb = 4.448 N; 1 ksi = 6.895 MPa.

<sup>1</sup>All properties and design values are based on full-unreduced cross section of the member, away from the swaged end and web punchouts (except for Vanet) for studs, and away from cut lip for tracks (See Figure 1). V<sub>anet</sub> was calculated at a stud section where the punchout exists. <sup>2</sup> For deflection calculations, use the effective moment of inertia, I<sub>xe</sub>.

<sup>3</sup> Strength increase from cold work of forming was not considered in the calculation of capacities.





# **ICC-ES Evaluation Report**

# **ESR-5191 LABC and LARC Supplement**

Issued March 2024 This report is subject to renewal March 2025.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 05 00 00—METALS Section: 05 40 00—Cold-Formed Metal Framing Section 05 41 00—Structural Metal Stud Framing

DIVISION: 09 00 00—FINISHES Section: 09 22 16.13—Non-Structural Metal Stud Framing

**REPORT HOLDER:** 

STEEL TECH USA

**EVALUATION SUBJECT:** 

### STEEL STUD FRAMING

### 1.0 REPORT PURPOSE AND SCOPE

#### Purpose:

The purpose of this evaluation report supplement is to indicate that the Steel Stud Framing studs and tracks, described in ICC-ES evaluation report <u>ESR-5191</u>, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

#### Applicable code editions:

- 2023 City of Los Angeles Building Code (LABC)
- 2023 City of Los Angeles Residential Code (LARC)

#### 2.0 CONCLUSIONS

The Steel Stud Framing studs and tracks, described in Sections 2.0 through 7.0 of the evaluation report <u>ESR-5191</u>, comply with the LABC Chapter 22, and the LARC, and are subject to the conditions of use described in this supplement.

# 3.0 CONDITIONS OF USE

The Steel Stud Framing studs and tracks described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-5191.
- The design, installation, conditions of use and identification of the Steel Stud Framing studs and tracks are in accordance with the 2021 *International Building Code*<sup>®</sup> (IBC) provisions noted in the evaluation report <u>ESR-5191</u>.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16, 17 and 22, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.

This supplement expires concurrently with the evaluation report, issued March 2024.





# **ICC-ES Evaluation Report**

# ESR-5191 CBC and CRC Supplement

Issued March 2024 This report is subject to renewal March 2025.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 05 00 00—METALS Section: 05 40 00—Cold-Formed Metal Framing Section 05 41 00—Structural Metal Stud Framing

DIVISION: 09 00 00—FINISHES Section: 09 22 16.13—Non-Structural Metal Stud Framing

**REPORT HOLDER:** 

STEEL TECH USA

**EVALUATION SUBJECT:** 

### STEEL STUD FRAMING

### 1.0 REPORT PURPOSE AND SCOPE

#### Purpose:

The purpose of this evaluation report supplement is to indicate that the Steel Stud Framing studs and tracks, described in ICC-ES evaluation report ESR-5191, have also been evaluated for compliance with the codes noted below.

### Applicable code edition(s):

■ 2022 California Building Code (CBC)

For evaluation of applicable Chapters adopted by the California Office of Statewide Health Planning and Development (OSHPD) AKA: California Department of Health Care Access and Information (HCAI) and the Division of State Architect (DSA), see Sections 2.1.1 and 2.1.2 below.

■ 2022 California Residential Code (CRC)

#### 2.0 CONCLUSIONS

# 2.1 CBC:

The Steel Stud Framing studs and tracks, described in Sections 2.0 through 7.0 of the evaluation report ESR-5191, comply with CBC Chapter 22, provided the design and installation are in accordance with the 2021 *International Building Code*<sup>®</sup> (IBC) provisions noted in the evaluation report and the additional requirements of CBC Chapters 16, 17 and 22, as applicable.

**2.1.1 OSHPD:** The applicable OSHPD Sections and Chapters of the CBC are beyond the scope of this supplement.

2.1.2 DSA: The applicable DSA Sections and Chapters of the CBC are beyond the scope of this supplement.

# 2.2 CRC:

The Steel Stud Framing studs and tracks, described in Sections 2.0 through 7.0 of the evaluation report ESR-5191, comply with the CRC, provided the design and installation are in accordance with the 2021 *International Residential Code*<sup>®</sup> (IRC) provisions noted in the evaluation report.

This supplement expires concurrently with the evaluation report, issued March 2024.

