

ESR-4313

Reissued May 2024	This report also contains:
	- CBC Supplement
Subject to renewal May 2026	- FBC Supplement
	- LABC Supplement

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright © 2024 ICC Evaluation Service, LLC. All rights reserved.

DIVISION: 05 00 00— METALS	REPORT HOLDER:	EVALUATION SUBJECT:	
Section: 05 31 00— STEEL DECKING	METAL TECH, INC.	STEEL DECK PANELS	
Section: 05 31 13— STEEL FLOOR DECKING			

1.0 EVALUATION SCOPE

Compliance with the following codes:

■ 2021, 2018 and 2015 International Building Code® (IBC)

For evaluation for compliance with codes adopted by the <u>Los Angeles Department of Building and Safety</u> (<u>LADBS</u>), see <u>ESR-4313 LABC Supplement</u>.

Properties evaluated:

Structural

2.0 USES

Metal Tech, Inc. concrete filled steel decks are used as floors to support vertical gravity loads and as horizontal diaphragms to resist lateral loads due to wind and seismic forces.

3.0 DESCRIPTION

3.1 Steel Decks:

The steel deck panels are cold-formed from steel sheets complying with ASTM A653 SS Grade 50 and have a minimum G30 galvanized coating. For use with floor decks and composite action with concrete, the steel deck panels have Type 1 embossments complying with SDI C-2017. The steel deck panel properties are provided in <u>Table 1</u> and depictions of the steel deck panels are provided in <u>Figure 1</u>.

3.2 Support and Sidelap (Seam) Connections:

Screws used to attach steel deck panels to structural steel supports and used to attach steel deck panel sidelaps together must be No. 12 self-drilling or self-piercing tapping screws complying with ASTM C1513. The screws must be long enough to penetrate through the connected steel deck panels and the supporting steel member with a minimum of three threads protruding past the back side of the supporting steel member.

3.3 Concrete Fill:

Concrete must be in accordance with the IBC and must have a minimum 28-day compressive strength of 3,000 psi (20.68 MPa). Lightweight concrete fill must be minimum 110 pcf (1762 kg/m³). Normalweight concrete fill must be 145 pcf (2323 kg/m³)

4.0 DESIGN VALUES

Allowable stress design values for use in the design to resist the loads prescribed in Chapter 16 of the IBC are provided in <u>Tables 1</u> through <u>6</u>. For structural concrete-filled diaphragm shear strength, refer to AISI S310-20 Section D4.2. For lightweight insulating concrete-filled diaphragm shear strength, refer to AISI S310-20 Section D4.3.

5.0 CONDITIONS OF USE:

The Metal Tech, Inc. steel deck panels described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** The steel deck panels must be installed in accordance with this report and Metal Tech, Inc. published installation guidelines and instructions. If there is a conflict between Metal Tech, Inc. published installation guidelines and instructions and this report, this report governs.
- **5.2** The minimum delivered thickness of the steel deck panel must be 95% of the design base metal thickness exclusive of all coatings.
- 5.3 Special inspection must comply with IBC Chapter 17.
- **5.4** Calculations and details demonstrating that the loads applied to the steel deck panels comply with this report must be submitted to the code official for approval. Calculations and drawings, must be prepared, signed and sealed by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- **5.5** The minimum loads of IBC Section 1607 (including concentrated loads) in addition to the construction loads required by the reference in IBC Section 2210.1.1 must be considered by the registered design professional, as applicable.
- **5.6** Concrete-filled sections must not be used to support loads that are predominantly vibratory, such as those for operation of heavy machinery, reciprocating motors or moving loads.
- **5.7** The steel deck panels are manufactured in Menifee, California under an approved quality control program with annual inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

6.1 Data in accordance with the ICC-ES Acceptance Criteria for Steel Deck Roof and Floor Systems (AC43), dated June 2022.

7.0 IDENTIFICATION

- **7.1** Each bundle of steel deck panels is marked with labels with Metal Tech, Inc., the minimum base-metal thickness (uncoated), minimum specified yield strength and the ICC-ES Report number ESR-4313.
- 7.2 The report holder's contact information is the following:

METAL TECH, INC. 27368 VIA INDUSTRIA SUITE 101 TEMECULA, CALIFORNIA 92590

TABLE 1—SECTION PROPERTIES OF THE STEEL DECK PANELS¹

GAGE	DESIGN BASE METAL THICKNESS (inch)	F _y (ksi)	WEIGHT (plf)	l _p (in.⁴/ft.)	lո (in.⁴/ft.)	S₅ (in.³/ft.)	S _n (in.³/ft.)	M _{n,p} /Ω (lbin./ft.)	M _{n,n} /Ω (lbin./ft.)	V _n /Ω (lb./ft.)
22	0.0295	50	1.80	0.278	0.278	0.236	0.236	6975	6976	916
20	0.0358	50	2.10	0.354	0.354	0.312	0.312	9239	9240	1309
18	0.0474	50	2.70	0.486	0.486	0.442	0.442	13130	13132	1715
16	0.0598	50	3.30	0.627	0.628	0.587	0.587	17463	17466	2139

For SI: 1 in. = 25.4 mm; 1 ft. = 305 mm; 1 lb. = 4.45 N

1. Tabulated values based on AISI S100-16.

2. To convert from ASD to LRFD, multiply the allowable moment by 1.5 and multiply the allowable shear by 1.52.

Gage (design base metal thickness)

Ip - Effective Positive Moment of Inertia

In - Effective Negative Moment of Inertia

S_p – Effective Positive Section Modulus

S_n– Effective Negative Section Modulus

 $M_{n,p}/\Omega$ - ASD Allowable Positive Moment

 $M_{n,n}/\Omega$ - ASD Allowable Negative Moment

 V_n/Ω - ASD Allowable Shear

ASD – Allowable Strength Design

TABLE 2—ASD ALLOWABLE REACTIONS BASED ON WEB CRIPPLING OF THE STEEL DECK PANELS^{1,2,3,4,5}

	22 GA					20 GA				
BEARING	ONE-FLANGE LOADING TWO-FLAN			E LOADING BEARING		ONE-FLANG	E LOADING	TWO-FLANGE LOADING		
LENGTH AT SUPPORTS	Interior Reaction	End Reaction	Interior Reaction	End Reaction	LENGTH AT SUPPORTS	Interior Reaction	End Reaction	Interior Reaction	End Reaction	
(inch)	R _{bi} /Ω (Ib./ft.)	R _{be} /Ω (Ib./ft.)	R _{bi} /Ω (Ib./ft.)	R _{be} /Ω (Ib./ft.)	(inch)	R _{bi} /Ω (Ib./ft.)	R _{be} /Ω (Ib./ft.)	R _{bi} /Ω (Ib./ft.)	R _{be} /Ω (Ib./ft.)	
2	582	391	686	365	2	844	560	1012	561	
3	658	450	784	409	3	951	643	1151	625	
4	722	500	867	446	4	1040	712	1268	680	
5	779	544	939	478	5	1119	773	1371	728	
MINIMUM		18	GA		MINIMI	16 GA				
REARING	ONE-FLANGE LOADING TWO-FLANGE LOADING			E LOADING	BEARING	ONE-FLANGE LOADING TWO-FLANGE			SE LOADING	
	Interior	End	Interior	End		Interior	End	Interior	End	
SUPPORTS	Reaction	Reaction	Reaction	Reaction	SUPPORTS	Reaction	Reaction	Reaction	Reaction	
(inch)	R _{bi} /Ω	R_{be}/Ω	R _{bi} /Ω	R _{be} /Ω	(inch)	R _{bi} /Ω	R_{be}/Ω	R _{bi} /Ω	R_{be}/Ω	
((lb./ft.)	(lb./ft.)	(lb./ft.)	(lb./ft.)	(,	(lb./ft.)	(lb./ft.)	(lb./ft.)	(lb./ft.)	
2	1443	941	1760	1029	2	2242	1443	2768	1681	
3	1613	1072	1989	1139	3	2492	1635	3109	1850	
4	1757	1183	2181	1232	4	2703	1797	3397	1993	
5	1883	1280	2351	1314	5	2889	1939	3650	2118	

For SI: 1 in. = 25.4 mm; 1 ft. = 305 mm; 1 lb. = 4.45 N

1. Tabulated values based on AISI S100-16.

2. R_{bi}/Ω – ASD allowable web crippling reactions at interior supports.

3. R_{be}/Ω – ASD allowable web crippling reactions at exterior supports.

4. Steel deck panels must be fasteners to structural steel supports. Support fasteners must be spaced less than or equal to 12 inches o.c.

5. As defined by AISI S100-16:

 One-flange loading or reaction is defined as the condition where the clear distance between the bearing edges of adjacent opposite concentrated loads or reactions is equal to or greater than 1.5h.

 Two-flange loading or reaction is defined as the condition where the clear distance between the bearing edges of adjacent opposite concentrated loads or reaction is less than 1.5h.

• End loading or reaction is defined as the condition where the distance from the edge of the bearing to the end of the member is equal to or less than 1.5h.

Interior loading or reaction is defined as the condition where the distance from the edge of the bearing to the end of the member is greater than 1.5h.

TABLE 3—MAXIMUM UNSHORED CONSTRUCTION CLEAR SPANS

STEEL	TOTAL		NS ^{1,2}						
PANEL	THICKNESS	CONCRETE	Number of	Span	Length	CONCRETE	Number of	Span	Length
GAGE (inch)	(inch)	TYPE (weight, psf)	Spans	feet	inch	TYPE (weight, psf)	Spans	feet	inch
		NIMC	1	7	9		1	8	6
	4	(36.3)	2	9	0	(27.5)	2	9	6
22		(00.0)	3	9	3	(21.0)	3	9	9
		NWC	1	7	5	LWC	1	8	1
	4 1/2	(42.3)	2	8	6	(32.1)	2	9	3
		. ,	3	8	9	· · ·	3	9	/
	F	NWC	1	(1	LWC	1	/	9
	5	(48.3)	2	8	1	(36.7)	2	8	- 11
			3	0	4		3	9	2
	5 1/2	NWC	2	7	9	LWC	ן ר	/ Q	7
5 1/2	5 1/2	(54.4)	3	8	9	(41.3)	3	8	10
			1	9	3		1	10	1
	4	NWC	2	10	3	LWC	2	10	10
	-	(36.3)	3	10	7	(27.5)	3	11	3
			1	8	9		1	9	7
	4 1/2	NWC (42.3)	2	9	9	LWC	2	10	8
	,_		3	10	1	(32.1)	3	11	1
20		NWC (48.3)	1	8	5	114/0	1	9	2
	5		2	9	4		2	10	2
			3	9	8	(30.7)	3	10	7
		NWC (54.4)	1	8	1	LWC (41.3)	1	8	10
	5 1/2		2	9	0		2	9	10
			3	9	3		3	10	2
		NIMC	1	10	3	LWC	1	11	2
	4	(36.3)	2	12	2	(27.5)	2	12	10
		(00.0)	3	12	7	(21.0)	3	13	3
		NWC	1	9	9	IWC	1	10	7
	4 1/2	(42.3)	2	11	7	(32.1)	2	12	7
18		(1=10)	3	12	0	· · · /	3	13	0
-	-	NWC	1	9	4	LWC	1	10	2
	5	(48.3)	2	11	-	(36.7)	2	12	1 C
			3	0	5		3	12	0 10
	F 1/2	NWC	2	9	7	LWC	1	9	0
	5 1/2	(54.4)	2	10	0	(41.3)	2	12	0
			1	11	1		1	12	1
	Δ	NWC	2	14	0	LWC	2	14	9
	-	(36.3)	3	13	8	(27.5)	3	14	11
			1	10	7		1	11	6
	4 1/2	NWC	2	13	3	LWC	2	14	5
		(42.3)	3	13	1	(32.1)	3	14	3
16			1	10	2	114/2	1	11	0
	5	NWC	2	12	8		2	13	11
		(48.3)	3	12	6	(30.7)	3	13	8
			1	9	9		1	10	8
	5 1/2	(54 A)	2	12	2		2	13	5
		(54.4)	3	12	1	(+1.3)	3	13	2

For SI: 1 in. = 25.4 mm; 1 ft. = 305 mm

1. The maximum construction clear spans are based on only the steel deck panel properties noted in Table 1.

2. The maximum construction clear spans are based on the construction loading diagrams in SDI C-2017 Appendix 1 Figures 1, 2, and 3 and the following:

a. The dead load of the steel deck panel and dead load of the concrete;

b. A concentrated construction live load of 150 lbs;

c. A uniform construction live load of 20 $\ensuremath{\mathsf{psf}}\xspace$; and

d. The lesser of a deflection limit of L/180 of the span or 0.75 inch, whichever is the worst case.

TABLE 4—ASD ALLOWABLE PUNCHING SHEAR RESISTANCE OF COMPOSITE STEEL FLOOR DECK SLABS (lbs)^{1,2}

STEEL DECK		ARING AREA	TOTAL SLAB THICKNESS (inch)						
PANEL GAGE	WIDTH (inch)	LENGTH (inch)	4	4 1/2	5	5 1/2			
	2.5	4	6354	9037	12159	15720			
	4	5	6627	9288	12351	15815			
22 20 19 and 16	2.5	6	7449	10407	13803	17637			
22, 20, 10, and 10	5	6	8325	11502	15117	19170			
	4	4	7011	9859	13145	16870			
	6	6	8764	12050	15774	19937			

For SI: 1 in. = 25.4 mm; 1 ft. = 305 mm; 1 lb. = 4.45 N; 1 kip = 4.45 kN

1. Tabulated values based on SDI C-2017.

2. The concentrated load creating punching shear must be transferred through a steel base plate.

STEEL DECK PANEL	CONCRETE TYPE		I_d	M/ Ω (Ib *ft /ft)	V _n /Ω
GAGE			<u>(III. /IL.)</u>	(ID. 11./IL.)	(ID./IL.)
22		4	2.01	1901	1990
	LWC	4 1/2	5.14	2336	2101
		5	5.17	2774	2302
22		5 1/2	0.93	3203	2090
		4	3.40	2047	2374
	NWC	4 1/2	4.91	2430	2020
		5	0.01	2003	2097
		5 1/2	9.10	3323	3100
		4	2.01	2320	2347
	LWC	4 1/2	4.01	2793	2000
		5	5.53	3291	2740
20		5 1/2	7.39	3806	2952
	NWC	4	3.03	2430	2731
		4 1/2	5.21	2920	2985
		5	7.22	3431	3254
		5 1/2	9.69	3960	3537
		4	3.13	2643	2/16
	LWC	4 1/2	4.45	3555	2907
		5	6.11	4198	3109
18		5 1/2	8.16	4866	3321
		4	4.00	2643	3098
	NWC	4 1/2	5.73	3737	3353
		5	7.91	4401	3622
		5 1/2	10.59	5088	3905
		4	3.42	2566	3101
	LWC	4 1/2	4.82	3027	3292
	EWG	5	6.61	5002	3494
16		5 1/2	8.80	5804	3706
10		4	4.33	2566	3483
	NWC	4 1/2	6.17	3027	3738
		5	8.50	5264	4007
		5 1/2	11.36	6092	4289

TABLE 5—MOMENT OF INERTIA, MOMENT, AND SHEAR CAPACITIES OF COMPOSITE STEEL FLOOR DECK SLABS^{1,2}

For **SI:** 1 in. = 25.4 mm; 1 ft. = 305 mm; 1 lb. = 4.45 N

 $M/\Omega - ASD$ Flexural Resistance

 V_n/Ω – ASD Allowable One-way Shear Strength

Id – Moment of Inertia

1. Tabulated values based on SDI C-2017 and Type 1 embossments.

2. Deflections resulting from concrete creep, where applicable, must be determined in accordance with SDI C-2017 Section 2.4.B.7.

TABLE 6—ASD ALLOWABLE UNIFORM SUPERIMPOSED LIVE LOADS OF COMPOSITE STEEL FLOOR DECK SLAB (psf) 1,2,3,4,5

STEEL DECK	CONCRETE	TOTAL SLAB	CONCRETE		SPAN (feet – inch)						
PANEL GAGE	TYPE	THICKNESS (inch)	WEIGHT (psf)	8'-0"	8'-6"	9'-0"	9'-6"	10'-0"	10'-6"		
		4	27.5	215	187	163	144	127	112		
	114/0	4 1/2	32.1	239	223	198	174	154	136		
	LVVC	5	36.7	259	242	226	207	183	162		
22		5 1/2	41.3	281	262	245	230	212	189		
22		4	36.3	218	189	164	143	126	110		
	NIMO	4 1/2	42.3	263	228	198	174	152	134		
	NVVC	5	48.3	310	269	235	205	181	159		
		5 1/2	54.4	341	312	272	238	210	185		
		4	27.5	260	227	199	175	154	129		
		4 1/2	32.1	283	264	241	213	189	168		
	LVVC	5	36.7	304	284	266	250	224	199		
20		5 1/2	41.3	326	304	285	267	252	232		
20	NWC	4	36.3	265	231	202	177	156	138		
		4 1/2	42.3	321	279	244	214	189	167		
		5	48.3	356	330	289	254	224	199		
		5 1/2	54.4	386	360	335	294	260	231		
		4	27.5	300	262	231	204	176	148		
		4 1/2	32.1	329	307	288	271	250	218		
	LVVC	5	36.7	349	326	306	288	271	257		
19		5 1/2	41.3	371	347	325	306	288	272		
10		4	36.3	291	254	222	195	172	153		
	NIMC	4 1/2	42.3	374	350	324	286	254	226		
	NVVC	5	48.3	400	375	351	330	301	268		
		5 1/2	54.4	400	400	377	354	333	312		
		4	27.5	290	254	223	197	175	156		
		4 1/2	32.1	344	300	264	234	207	185		
16	LVVC	5	36.7	397	371	348	328	309	293		
		5 1/2	41.3	400	391	367	346	326	308		
10		4	36.3	281	244	214	188	166	147		
	NIMC	4 1/2	42.3	333	290	253	223	197	174		
	INVIC	5	48.3	400	400	394	370	349	330		
		5 1/2	54.4	400	400	400	394	371	351		

For SI: 1 in. = 25.4 mm; 1 ft. = 305 mm; 1 lb. = 4.45 N

1. Tabulated values based on SDI C-2017.

2. Allowable Superimposed Uniform Live Loads of the composite steel floor deck-slab are based on:

a. The properties provided in Table 5

A total load deflection limit of L/240 (the dead load of the steel deck panel and concrete have been subtracted). Deflections resulting from concrete creep, b. where applicable, must be determined in accordance with SDI C-2017 Section 2.4.B.7.

A live load limit of 400 plf. c.

Simple spans between supports. If negative reinforcement is used such that continuity is established over supports, then the allowable loads may be d. determined in accordance with SDI C-2017 Section 2.4.B.12 (ACI 318).

Concrete and reinforcement must comply with SDI C-2017 Section 2.1.D.

3. 4. Reinforcement for temperature and shrinkage must comply with SDI C-2017 Section 2.4.B.15.

5. Installation must comply with SDI C-2017 Section 3.0.

16 Ga. = .0598"

18 Ga. = .0474"

20 Ga. = .0358"

22 Ga. = .0295"

FIGURE 1—STEEL DECK PANELS

FIGURE 2—SUPPORT FASTENER PATTERN

ESR-4313 LABC Supplement

Reissued May 2024

This report is subject to renewal May 2026.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 05 00 00—METALS Section: 05 31 00—Steel Decking Section: 05 31 13—Steel Floor Decking

REPORT HOLDER:

METAL TECH, INC.

EVALUATION SUBJECT:

STEEL DECK PANELS

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the steel deck panels, described in ICC-ES evaluation report <u>ESR-4313</u>, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code edition:

2020 City of Los Angeles Building Code (LABC)

2.0 CONCLUSIONS

The steel deck panels, described in Sections 2.0 through 7.0 of the evaluation report <u>ESR-4313</u>, comply with the LABC Chapter 22, and are subjected to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The steel deck panels described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report <u>ESR-4313</u>.
- The design, installation, conditions of use and identification are in accordance with the 2018 International Building Code[®] (IBC) provisions noted in the evaluation report <u>ESR-4313</u>.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Diaphragm shear strength values in the evaluation report must not be increased for load combinations that include wind or seismic loads.
- For diaphragms that are used to provide wall anchorage, the adequacy of the steel deck panel end and side seam connections, shall be verified by a design professional to the satisfaction of the code official.
- When exposed to weather, the deck units shall be galvanized.

This supplement expires concurrently with the evaluation report, reissued May 2024.

ESR-4313 CBC Supplement

Reissued May 2024

This report is subject to renewal May 2026.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 05 00 00—METALS Section: 05 31 00—Steel Decking Section: 05 31 13—Steel Floor Decking

REPORT HOLDER:

METAL TECH, INC.

EVALUATION SUBJECT:

STEEL DECK PANELS

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the steel deck panels, described in ICC-ES evaluation report ESR-4313, have also been evaluated for compliance with the code(s) noted below.

Applicable code edition:

■ 2019 California Building Code (CBC)

For evaluation of applicable chapters adopted by the California Office of Statewide Health Planning and Development (OSHPD) AKA: California Department of Health Care Access and Information (HCAI) and the Division of State Architect (DSA), see Sections 2.1.1 and 2.1.2 below.

2.0 CONCLUSIONS

2.1 CBC:

The steel deck panels, described in Sections 2.0 through 7.0 of the evaluation report ESR-4313, comply with CBC Chapter 22, provided the design and installation are in accordance with the 2018 *International Building Code*[®] (IBC) provisions noted in the evaluation report and the additional requirements of CBC Chapters 16, and 17, as applicable.

2.1.1 OSHPD:

The applicable OSHPD Sections of the CBC are beyond the scope of this supplement.

2.1.2 DSA:

The applicable DSA Sections of the CBC are beyond the scope of this supplement.

This supplement expires concurrently with the evaluation report, reissued May 2024.

ESR-4313 FBC Supplement

Reissued May 2024

This report is subject to renewal May 2026.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 05 00 00—METALS Section: 05 31 00—Steel Decking Section: 05 31 13—Steel Floor Decking

REPORT HOLDER:

METAL TECH, INC.

EVALUATION SUBJECT:

STEEL DECK PANELS

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the steel deck panels, described in ICC-ES evaluation report ESR-4313, have also been evaluated for compliance with the code noted below.

Applicable code edition:

2020 Florida Building Code—Building

CONCLUSIONS

The steel deck panels, described in Sections 2.0 through 7.0 of ICC-ES evaluation report ESR-4313, comply with the *Florida Building Code—Building*, provided the design requirements are determined in accordance with the *Florida Building Code—Building*. The installation requirements noted in ICC-ES evaluation report ESR-4313 for the2018 *International Building Code®* meet the requirements of the *Florida Building Code—Building*.

Use of the steel deck panels has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* except that the 22 gage steel deck panels must have a minimum G90 galvanized coating in accordance with 2222.6.1 of the *Florida Building Code—Building*.

For products falling under Florida Rule 61G20-3, verification that the report holder's quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with ICC-ES evaluation report ESR-4313, reissued May 2024.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

