

Reissued May 2024

www.icc-es.org | (800) 423-6587 | (562) 699-0543

ICC-ES Listing Report ELC-4757

A Subsidiary of the International Code Council[®]

This listing is subject to renewal May 2025.

CSI: DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

> DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

Product Certification System:

The ICC-ES product-certification system includes evaluating reports of tests of standard manufactured product, prepared by accredited testing laboratories and provided by the listee, to verify compliance with applicable codes and standards. The system also involves factory inspections, and assessment and surveillance of the listee's quality system.

Product: Würth WIT-PE 1000 Adhesive Anchor System in Cracked and Uncracked Concrete

Listee: ADOLF WÜRTH GmbH & CO. KG

Compliance with the following standards:

Annex D, Anchorage of CSA A23.3-14, Design of Concrete Structures, CSA Group.

Compliance with the following codes:

Würth WIT-PE 1000 Adhesive Anchor System, as described in this listing report, is in conformance with CSA A23.3-14, Annex D, as referenced in the applicable section of the following code editions:

National Building Code of Canada[®] 2015 Applicable Section: Division B, Part 4, Section 4.3.3.

Description of anchors:

The Würth WIT-PE 1000 Adhesive Anchor System is comprised of Würth WIT-PE 1000 two-component adhesive filled in cartridges, static mixing nozzles, dispensing tools, hole cleaning equipment and adhesive injection accessories, and steel anchor elements, which are continuously threaded steel rods or steel reinforcing bars (to form the Würth WIT-PE 1000 Adhesive Anchor System).

The primary components of the Würth WIT-PE 1000 Adhesive Anchor System, including the Würth WIT-PE 1000 adhesive cartridge, static mixing nozzle, dispenser, and steel anchor elements, are shown in Figures 1 and 2 of this listing report. The manufacturer's printed installation instructions (MPII), included with each adhesive unit package, are shown in Figure 3 of this listing report.

Hole Cleaning Equipment:

Standard Equipment: Hole cleaning equipment is comprised of steel wire brushes supplied by Adolf Würth GmbH & Co. KG, and air blowers which are shown in Figure 1 of this listing report. The Würth dust extraction system shown in Figure 1 of this report removes dust with a HEPA dust extractor during the hole drilling and cleaning operation.

Hollow Drill Bit System: The Würth hollow drill bit system shown in Figure 1 is comprised of Heller Duster Expert Hollow drill bit with carbide tips conforming to ANSI B212.15 attached to a class M vacuum that has a minimum air flow rating of 90cfm (150m³/h, 42l/s). The vacuum dust extractor system removes the drilling dust during the drilling operation, eliminating the need for additional hole cleaning.

Listings are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the listing or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this listing, or as to any product covered by the listing.

Drilling and cleaning	Tool	Accessories and Shrouds	Vacuum
Dust extraction system for standard drilling and cleaning equipment		SDS-Plus and SDS-Max Drill Bit	
Würth hollow drill bit system	Rotary Drill Hammer	Capture Device CAT# 0903990010	Dust Extractor

FIGURE 1—WÜRTH DUST REMOVAL DRILLING SYSTEM WITH HEPA DUST EXTRACTOR OPTIONS

Identification:

- Würth WIT-PE 1000 adhesive is identified by packaging labeled with the manufacturer's name (Adolf Würth GmbH & Co. KG) and address, anchor name, the lot number, the expiration date, and the evaluation report number (ELC-4757) and the ICC-ES listing mark. Threaded rods, nuts, washers, and deformed reinforcing bars are standard steel anchor elements and must conform to applicable national or international specifications as set forth in Tables 2 and 3 of this listing report.
- 2. The report holder's contact information is the following:

ADOLF WÜRTH GmbH & CO. KG REINHOLD-WÜRTH-STRABE 12-17 KÜNZELSAU 74653 GERMANY +49 (7940) 15 0 www.wuerth.de info@wuerth.de Installation: Installation parameters are illustrated in Figures 3 and 4 of this listing report. Installation must be in accordance with CSA A23.3-14 D.10 and D.10.2, as applicable. Anchor locations must comply with this listing report and the plans and specifications approved by the code official. Installation of the Würth WIT-PE 1000 Adhesive Anchor System must conform to the manufacturer's printed installation instructions included in each unit package as described in Figure 3 of this listing report.

The adhesive anchor system may be installed in downwards, horizontally and upwardly inclined orientation applications (e.g. overhead). If the bottom or back of the bore hole is not reached with the mixing nozzle, a mixer extension tube, supplied by Würth must be attached to the mixing nozzle as described in Figure 3 of this listing report. Additionally, horizontal or upwardly inclined orientation applications of all bore hole depths, and downwards applications with a bore hole depth of more than 10 inch (250 mm) are to be installed using piston plugs for the $\frac{5}{8}$ -inch and M16 through $\frac{11}{4}$ -inch and M30 diameter threaded steel rods, and No. 5 and \emptyset 16 through No. 10 and \emptyset 32, steel reinforcing bars, installed in the specified hole diameter, and attached to the mixing nozzle and extension tube supplied by Würth as described in Figure 3 in this listing report. For installation with the $\frac{3}{8}$ -inch, $\frac{1}{2}$ -inch, M8, M10 and M12 diameter threaded steel rods, and No. 3, No. 4, \emptyset 8, \emptyset 10 and \emptyset 12 steel reinforcing bars only, a piston plug is not required.

Installation of anchors in horizontal or upwardly inclined orientations shall be fully restrained from movement throughout the specified curing period through the use of temporary wedges, external supports, or other methods. Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance.

Installation of anchors in horizontal or upwardly included orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program in accordance with CSA A23.3-14 D.10.2.2 or D.10.2.3, as applicable.

FIGURE 3—INSTALLATION INSTRUCTIONS

0

(No.)

No plugs required

Cat.#

Ð

0903488057

090348805

0903488053

090348806

0903488061

Pieton

plug

30

32 35

40

Cat. #

[-]

0903489512

0903489514

090348951

090348951

090348952

09034895

0903489

0903489530

0903489535

1.20 090348950 1.28 090348950

1.40 0903489540

d_{≥.nir} min. Brush - Ø [mm] [inch] 10.5 0,41 12.5 0.41 14.5

0.49

0.57

0.65

0.73

0.81

0.96

14.5

16.5

18.5

20.5 22.5 24.5

28.5 30.5

32.5 35.5

40.5

Mannan	11111	8		nua ana	100	6	D'		
Threaded Rod	Rebar	d₀ Drill bit - Ø	c Brus	bl _b sh-⊘	dı min. B	∖riin rush - Ø	Cat. #	Piston plug	Cat. #
[inch]	[inch]	[inch]	[mm]	[inch]	[mm]	[inch]	Ð	(No.)	[·]
3/8"	-	7/16	13.5	0.528	11.6	0.458	0903489512		
10	#3	1/2	14.3	0.562	13.2	0.520	0903489513	Malakia	a second second
1/2"	-	9/16	16.3	0.654	14.8	0.582	0903489515	No ping	srequireu
	#4	5/8	18.3	0.720	16.5	0.650	0903489517		
5/8"	1	11/16	20.0	0.787	18.0	0.709	0903489518	11/16	0903488063
	#5	3/4	21.5	0.846	19.5	0.777	0903489519	3/4	0903488064
3/4"	#6	7/8	24.8	0.976	23.0	0.905	0903489523	7/8	0903488062
7/8"	#7	1	28.5	1.122	26.2	1.030	0903489526	1	0903488059
1"	#8	1 1/8	31.8	1.252	29.5	1.160	0903489530	1 1/8	0903488052
1-1/4'	#9	1 3/8	38.2	1.504	35.8	1.410	0903489536	13/8	0903488060
-	#10	1 1/2	41.4	1.630	39.0	1.535	0903489539	11/2	0903488065

	#10	1 1/2	41.4	1.630	39.0	1.535	0903489539	
11 Souther								

4. Anchor property / Settin	ig inr	orma	ation	(mac	tiona	and	metr	IC SI	zes)																							
	N	Iomin	al thre	aded i	od (fra	octiona	al)		No	minal	threa	ded ro	d (met	tric)			F	Reinfo	rcing b	ar (fra	ctiona	d)				Re	inforc	ing bar	r (met	ric)		
			ir	nch; ft	lb.						mm	; Nm							inch	ftlb.							r	nm; Nr	n			
Anchor size	3/8"	1/2'	5/8"	3/4'	7/8"	1'	1-1/4"	M8	M10	M12	M16	M20	M24	M27	M30	#3	#4	#5	#6	#7	#8	#9	#10	28	@10	Ø 12	Ø14	\emptyset 16	$\varnothing 20$	Ø 25	@28	Ø 32
d _s = Nominal anchor rod diameter	0.375	0.500	0.625	0.750	0.875	1.000	1.250	8	10	12	16	20	24	27	30	3/8	1/2	5/8	3/4	7/8	1	1-1/8	1-1/4	8	10	12	14	16	20	25	28	32
d, (d,) = Nominal ANSI drill bit size	7/16	9/16	11/16	7/8	1	1-1/8	1-3/8	10	12	14	18	22	28	30	35	1/2	5/8	3/4	7/8	1	1-1/8	1-3/8	1-1/2	12	14	16	18	20	25	32	35	40
Parameter valid for anchors																																
T _{max} = Maximum torque	152)	30	44	66	96	147	221	10	20	40	80	120	170	250	300	152)	30	44	66	96	147	185	221	10	20	40	45	80	120	175	250	300
hermo = Minimum embedment	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	5	60	60	70	80	90	96	108	120	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5	60	60	70	75	80	90	100	112	128
hefmax = Maximum embedment	7-1/2	10	12-1/2	2 15	17-1/2	20	25	160	200	240	320	400	480	540	600	7-1/2	10	12-1/2	15	17-1/2	20	22-1/2	25	160	200	240	280	320	400	500	560	640
s _{min} = Min. spacing	1-7/8	2-1/2	3	3-5/8	4-1/4	4-3/4	5-7/8	40	50	60	80	100	120	135	150	1-7/8	2-1/2	3	3-5/8	4-1/4	4-3/4	5-1/4	5-7/8	40	50	60	70	80	100	125	140	160
c _{min} = Min. edge distance (100% T _{nss})	1-5/8	1-3/4	2	2-3/8	2-1/2	2-3/4	3-1/4	35	40	45	55	60	70	75	80	1-5/8	1-3/4	2	2-3/8	2-1/2	2-3/4	3	3-1/4	35	40	45	50	55	60	70	75	85
c _{min} = Min. edge distance (45% T _{max} ¹⁾)		-		1	.75		2.75		2.22			1	15		70	1			1	75		2	.75					4	5		7	0
hme = Minimum member thickness	h _{ef} +	1-1/4		18	h _{ef} + 20	1.			h ef + 30)		- 1	her + 20	d,		h _{ef} +	1-1/4			h _{ef} +	2 d o				h _{ef} + 30)			h _{ef} +	2 d _		
Parameter valid for post-installed rebar	8																															
h _{elmin} = Minimum embedment				-								÷.				2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5	60	60	70	75	80	90	100	112	128
helmas = Maximum embedment (PIR)				-								-				22-1/2	30	37-1/2	45	52-1/2	60	67-1/2	2 75	480	600	720	840	960	1200	1500	1680	1920
1) s = 5xd, 2) for ASTM 34	6 and E'	1554 G	rade 36	T	11 ft -	h																										

Threaded Rod [mm] M8 M10 M12

M12

M16 14

M20

M24 M27

M30

Rebar

[mm]

10

12

16

20

25 28 32

Drill bit - Ø

[mm]

14

16

18

20 22 25

28 30

32

40

Brush - Ø

[mm] [inch] 11.5 0.45 13.5 0.53

0.61

0.69 0.79 0.87 0.94 1.06 1.18 1.25

1.34

1.71

15.5 17.5

20 22 24

27

30 31.8

34 37

43.5

5. WIT-PE	1000 adhesive and	6. Post-i	 Post-installed rebar h_{ef} ≥ 20d 									
Injection tools		Cartridge system	Extra mixing nozzles	Piston Plug	Compressed air nozzle (min. 90 psi)	Extension tube VL10/0,75	Extension with wood handle	Cartridge	Injection tools	d₅	hef	Extension tube
14 to 20 fl. oz.	Manual tool Cat. #0891003105 Cat. #0891018	WIT-PE 1000 14.8 fl. oz. (440mL)						14 to 20 fl. oz.	Manual tool	≤ #5 ≤ 16 [mm]	≤ 27-1/2 [inch] ≤ 700 [mm]	VL10/0,75 Cat.
14 to 20 fl. oz. Cat. #0891018 dispenser Pneumatic tool Cat. #0891017	Pneumatic tool Cat. #0891017	WIT-PE 1000 20 fl. oz. (585mL)		L DV	1	(Cat. #0903488123) Extension tube VL16/1,8	(Cat#0903489103) Brush extension	14 to 20 fl. oz. 47 fl. oz.	Pneumatic tool	≤#5 ≤16 [mm]	≤ 51-1/2 (inch) ≤ 1300 (mm)	#0903488123 or VL16/1,8
47 fl. oz. dispensers	Pneumatic tool Cat. #0891015	WIT-PE 1000 47 fl. oz. (1400mL)	#0903488103	(Cat# Table 3a or 3b)	If the bore hole ground is not reached an extension shall be used.	(Cat. #0903488122)	(Cat#0903489111)	14 to 20 fl. oz. 47 fl. oz.	Pneumatic tool	≤#8 ≤25 [mm]	≤ 39-1/2 [inch] ≤ 1000 [mm]	Cat. #0903488122
	<u>[[</u>]	47 fl. oz.	Pneumatic tool	≤ #10 ≤ 32 [mm]	≤ 75 [inch] ≤ 1920 [mm]	VL16/1,8 Cat. #0903488122						

Reinhold Würth Strasse 12-17 74653 Künzelsau, Germany F: +49 7940 15-1000

FIGURE 3—INSTALLATION INSTRUCTIONS (Continued)

[Rev. c]

Anchor setting information:

FIGURE 4—INSTALLATION PARAMETERS FOR THREADED RODS AND REINFORCING BARS

Installation Torque Subject to Edge Distance:

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for edge distances less than the values given in Tables 5, 8, 11 and 14 as applicable. For edge distances c_{ai} and anchor spacing s_{ai} , the maximum torque T_{max} shall comply with the following requirements:

INSTALLATION TORQUE SUBJECT TO EDGE DISTANCE										
NOMINAL ANCHOR SIZE, D	MINIMUM EDGE DISTANCE, Cai	MINIMUM ANCHOR SPACING, sai	MAXIMUM TORQUE, T _{max}							
⁵ / ₈ in. to 1 in. M16 to M27	1.75 in. (45 mm)									
1¹/₄ in. M30	2.75 in. (70 mm)	5d	0.45 · T _{max}							

Ultimate Limit States Design:

Design resistance of anchors for compliance with the 2015 NBCC must be determined in accordance with CSA A23.3-14 Annex D, and this listing report.

Design table index is provided in Table 1 and design parameters are provided in Tables 2 through 15 of this listing report are based on the 2015 NBCC (CSA A23.3-14). The limit states design of anchors must comply with CSA A23.3-14 D.5.1, except as required in CSA A23.3-14 D.4.3.1.

Material resistance factors must be $\phi_c = 0.65$ and $\phi_s = 0.85$ in accordance with CSA A23.3-14 Sections 8.4.2 and 8.4.3, and resistance modification factor, *R*, as given in CSA A23.3-14 Section D.5.3, and noted in Tables 4 through 15 of this listing report, must be used for load combinations calculated in accordance with Division B, Part 4, Section 4.1.3 of the 2015 NBCC, or Annex C of CSA A23.3-14. The nominal strength, N_{sa} or V_{sa} , in Tables 4, 7, 10 and 13 of this listing report must be multiplied by ϕ_s and *R* to determine the factored resistance, N_{sar} or V_{sar} . The nominal concrete breakout strength, N_{cb} , N_{cbg} , V_{cb} , and V_{cbg} , in Tables 5, 8, 11 and 14 of this listing report must be multiplied by ϕ_c and *R* to determine the factored resistance, N_{cbr} , N_{cbgr} , V_{cbr} , and V_{cbgr} .

The factored bond resistance, N_{bar} , must be multiplied by ϕ_c and the permissible installation condition factors for dry concrete, R_d , water-saturated concrete, R_{ws} , and water-filled hole, R_{wf} for the corresponding installation conditions. The bond strength must further be modified with the factor, K_{wf} , for cases the holes are water-filled as given in Tables 6, 9, 12 and 15.

For anchors to be installed in seismic regions described in NBCC 2015: The factored resistance shear strength, V_{sar} , must be adjusted by $\alpha_{V,seis}$ as given in Tables 4, 7, 10 and 13 for the corresponding anchor steel. The nominal bond strength $\tau_{k,cr}$ must be adjusted by $\alpha_{N,seis}$ as given in Tables 6, 9, 12 and 15.

DESIG	N STRENGTH - THREADED RODS	Fractional	Metric
	Steel Strength - N_{sa} , V_{sa}	Table 3	Table 10
	Concrete Strength - Npn, Nsb, Nsbg, Ncb, Ncbg, Vcb, Vcbg, Vcp, Vcpg	Table 5	Table 11
	Bond Strength - N _a , N _{ag}	Table 6	Table 12
DESIGN S	TRENGTH ¹ – REINFORCING STEEL	Fractional	Metric
	Steel Strength - N _{sa} , V _{sa}	Table 7	Table 13
THUR WERE THE	Concrete Strength - Npn, Nsb, Nsbg, Ncb, Ncbg, Vcb, Vcbg, Vcp, Vcpg	Table 8	Table 14
	Bond Strength - Na, Nag	Table 9	Table 15

TABLE 1—DESIGN TABLE INDEX

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

	THREADED ROD SPECIFICATION		MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH 0.2 PERCENT OFFSET, fya	f _{uta} /f _{ya}	ELONGATION, MIN. PERCENT ¹¹	REDUCTION OF AREA, MIN. PERCENT	SPECIFICATION FOR NUTS ¹²
	ASTM A193 ² Grade B7 all sizes	psi (MPa)	125,000 (862)	105,000 (724)	1.19	16	50	ASTM A194 / A563 Grade DH
	ASTM A36 ³ / F1554 ⁴ , Grade 36 all sizes	psi (MPa)	58,000 (400)	36,000 (250)	1.61	23	40	ASTM A194 / A563
	ASTM F1554 ⁴ Grade 55	psi (MPa)	75,000 (517)	55,000 (380)	1.36	23	40	Grade A
STEEL	ASTM F1554 ⁴ Grade 105	psi (MPa)	125,000 (860)	105,000 (724)	1.19	15	45	
RBON S	ASTM A449 ⁵ ³ / ₈ to 1 in.	psi (MPa)	120,000 (830)	92,000 (635)	1.30	14	35	ASTM A194 / A563 Grade DH
CA	ASTM A449 ⁵ 1 ¹ / ₄ in	psi (MPa)	105,000 (720)	81,000 (560)	1.30	14	35	
	ASTM F568M ⁶ Class 5.8 (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	ASTM A563 Grade DH DIN 934 (8-A2K) ¹³
	ISO 898-1 ⁷ Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	EN ISO 4032 Grade 6
	ISO 898-1 ⁷ Class 8.8	MPa (psi)	800 (116,000)	640 (92,800)	1.25	12	52	EN ISO 4032 Grade 8
	ASTM F593 ⁸ CW1 ³ / ₈ to ⁵ / ₈ in. (316)	psi (MPa)	100,000 (690)	65,000 (450)	1.54	20	-	ASTM F594 Alloy
TEEL	ASTM F593 ⁸ CW2 ³ / ₄ to 1 ¹ / ₄ in. (316)	psi (MPa)	85,000 (590)	45,000 (310)	1.89	25	-	Group 1, 2 or 3
STAINLESS STI	ASTM A193/A193M ⁹ Grade B8/B8M2, Class 2B	psi (MPa)	95,000 (655)	75,000 (515)	1.27	25	40	ASTM A194/A194M
	ISO 3506-1 ¹⁰ A4-70 (M8-M24)	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	-	EN ISO 4032
	ISO 3506-1 ¹⁰ A4-50 (M27-M30) (psi		500 (72,500)	210 (30,450)	2.38	40	-	EN ISO 4032

¹Adhesive must be used with continuously threaded carbon or stainless steel rod (all-thread) having thread characteristics complying with ANSI B1.1 UNC Coarse Thread Series.

²Standard Specification for Alloy-Steel and Stainless steel Bolting Materials for High temperature of High Pressure service and Other Special Purpose Applications. ³Standard Specification for Carbon Structural steel

⁴Standard Specification for Anchor Bolts, Steel 36, 55 and 105-ksi Yield Strength.

⁵Standard Specification for Hex Cap Screws, Bolts and Studs, Heat Treated, 120/105/50 ksi Minimum Tensile Strength, General Use.

⁶Standard Specification for Carbon and Alloy Steel external Threaded Metric Fasteners.

⁷Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, Screws and Studs.

⁸Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications. ⁹Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

¹⁰Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, Screws and Studs.

¹¹Based on 2-in. (50 mm) gauge length except for ASTM A193, which is based on a gauge length of 4d.

¹²Nuts and washers of other grades and style having specified proof load stress greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod. ¹³Nuts for metric rods.

TABLE 3-STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD¹

	FORMATION	Symbol	Symbol Units		Nominal Rod Diameter (inch)								
DESIGN IN	FORMATION	Symbol	Units	³ /8	¹ / ₂	⁵ /8	³ /4	⁷ /8	1	1 ¹ / ₄			
Threaded r	rod O.D.	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)			
Threaded r	od effective cross-sectional area	Ase	in.² (mm²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.9691 (625)			
554,	Nominal strength as governed by steel	N _{sa}	lb (kN)	4,495 (20.0)	8,230 (36.6)	13,110 (58.3)	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,210 (250.0)			
36/F1{ de 36	strength (for a single anchor)	Vsa	lb (kN)	2,695 (12.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,725 (150.0)			
A A:	Reduction factor for seismic shear	α _{V,seis}	-		•	•	0.73	•	•				
AT S	Resistance modification factor for tension ²	R	-				0.80						
Ř	Resistance modification factor for shear ²	R	-				0.75						
14	Nominal strength as governed by steel	Nsa	lb (kN)	5,815 (25.9)	10,645 (47.6)	16,950 (75.5)	25,090 (111.7)	34,630 (154.1)	45,430 (202.1)	72,685 (323.1)			
1 F155 de 55	strength (for a single anchor)	V _{sa}	lb (kN)	3,490 (15.5)	6,385 (28.6)	10,170 (45.3)	15,055 (67)	20,780 (92.5)	27,260 (121.3)	43,610 (193.9)			
STR Gra	Reduction factor for seismic shear	α _{V,seis}	-				0.73						
AS	Resistance modification factor for tension ²	R	-				0.80						
	Resistance modification factor for shear ²	R	-				0.75						
е 15 ю	Nominal strength as governed by steel	N _{sa}	lb (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)			
M A19 de B7 1 F155 de 105	strength (for a single anchor)	Vsa	lb (kN)	5,810 (25.9)	10,640 (47.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.1)	72,680 (323.3)			
STI Gra STA	Reduction factor for seismic shear	α _{V,seis}	-										
A SO	Resistance modification factor for tension ²	R	-				0.80						
	Resistance modification factor for shear ²	R	-		•		0.75			-			
0 N	Nominal strength as governed by steel	N _{sa}	lb (kN)	9,300 (41.4)	17,030 (76.2)	27,120 (120.9)	40,140 (178.8)	55,405 (246.7)	72,685 (323.7)	101,755 (450.0)			
1 A44	strength (for a single anchor)	Vsa	lb (kN)	5,580 (24.8)	10,220 (45.7)	16,270 (72.5)	24,085 (107.3)	33,240 (148)	43,610 (194.2)	61,055 (270.0)			
STA	Reduction factor for seismic shear	α _{V,seis}	-				0.73						
∢	Resistance modification factor for tension ²	R	-				0.80						
	Resistance modification factor for shear ²	R	-			1	0.75	-	1	-			
Σ	Nominal strength as governed by steel	N _{sa}	lb (kN)	5,620 (25)	10,290 (46)	16,385 (73)	24,250 (108)	33,470 (149)	43,910 (195.5)	70,260 (312.5)			
F568 ss 5.8	strength (for a single anchor)	Vsa	lb (kN)	3,370 (15)	6,175 (27.6)	9,830 (43.8)	14,550 (64.8)	20,085 (89.4)	26,350 (117.3)	42,155 (187.5)			
Clas	Reduction factor for seismic shear	α _{V,seis}	-				0.73						
AS	Resistance modification factor for tension ²	R	-				0.70						
	Resistance modification factor for shear ²	R	-			,	0.65						
Ň	Nominal strength as governed by steel	N _{sa}	lb (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,370 (366.4)			
⁼ 593 (strength (for a single anchor)	Vsa	lb (kN)	4,650 (20.7)	8,515 (37.9)	13,560 (60.3)	17,060 (75.9)	23,545 (104.7)	30,890 (137.4)	49,425 (219.8)			
Stai	Reduction factor for seismic shear	α _{V,seis}	-				0.73						
AST	Resistance modification factor for tension ²	R	-				0.70						
	Resistance modification factor for shear ²	R	-				0.65			,			
193M M2,	Nominal strength as governed by steel	N _{sa}	lb (kN)	7,365 (32.8)	13,480 (60.3)	21,470 (95.6)	31,780 (141.5)	43,860 (195.2)	57,540 (256.1)	92,065 (409.4)			
193/A ⁻ 38/B8i ss 2B	strength (for a single anchor)	V _{sa}	lb (kN)	4,420 (19.7)	8,090 (36.2)	12,880 (57.4)	19,070 (84.9)	26,320 (117.1)	34,525 (153.7)	55,240 (245.6)			
1 A1 de E Clat	Reduction factor for seismic shear	α _{V,seis}	-				0.73						
Grac	Resistance modification factor for tension ²	R	-				0.80						
Ϋ́	Resistance modification factor for shear ²	R	-				0.75						

¹Values provided for common rod material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3. Nuts and washers must comply with requirements for the rod.

The tabulated value of the material resistance factors ϕ_{a} and ϕ_{s} , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

TABLE 4—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON REINFORCING BARS

REINFORCING SPECIFICATION	UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, <i>f</i> uta	MINIMUM SPECIFIED YEILD STRENGTH, fya
ASTM A615 ¹ , A767 ³ , A996 ⁴	psi	90,000	60,000
Grade 60	(MPa)	(620)	(414)
ASTM A706 ² , A757 ³	psi	80,000	60,000
Grade 60	(MPa)	(550)	(414)
ASTM A615 ¹ , Grade 40	psi	60,000	40,000
	(MPa)	(415)	(275)
DIN 488 ⁵ BSt 500	MPa	550	500
	(psi)	(80,000)	(72,500)

¹Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

²Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.

³Standard specification for Zinc-Coated (Galvanized) steel Bars for Concrete Reinforcement. ⁴Standard specification for Rail-Steel and Axle-steel Deformed bars for Concrete Reinforcement.

⁵Reinforcing steel, reinforcing steel bars; dimensions and masses.

TABLE 5—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH ALL DRILLING METHODS¹

		Units	Nominal Rod Diameter (inch)											
DESIGN INFORMATION	Symbol	Units	³ /8	1/2	⁵ /8	3/4	⁷ /8	1	1 ¹ / ₄					
Effectiveness factor for cracked concrete	K _{c,cr}	in-lb (SI)		-		17 (7)								
Effectiveness factor for uncracked concrete	K _{c,uncr}	in-lb (SI)				24 (10)								
Min. anchor spacing	Smin	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 (76)	3 ³ / ₄ (95)	4 ¹ / ₄ (108)	4 ³ / ₄ (121)	5 ⁷ / ₈ (149)					
Min. odgo distonoo		in.	1 ⁵ /8	1 ³ /4	2 (51)	2 ³ / ₈ (60)	2 ¹ / ₂ (64)	2 ³ / ₄ (70)	3 ¹ / ₄ (82)					
Min. euge distance	Cmin	(mm)	(41)	(44)	See Installatio	on Torque Subje for smaller	ct to Edge Distar edge distance w	nce Section of th ith 0.45 T _{max}	nis listing report					
Min. member thickness	h _{min}	in. (mm)	h _{ef} (h _{ei}	+ 1 ¹ / ₄ + 30)			$h_{ef} + 2d_0^{3}$							
Critical edge distance - splitting (for uncracked concrete) ²	Cac	-				2∙h _{ef}								
Critical anchor spacing – splitting	S _{ac}	-				2·c _{ac}								
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-		1.00										
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-	1.00											

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Additional setting information is described in Figure 3, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. $^{3}d_{0}$ = hole diameter.

TABLE 6—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR WÜRTH HOLLOW CARBIDE DRILL BIT)¹

	DESIGN INFORMATION				Nominal Rod Diameter (inch)								
	DESIGN INFOR	MATION	Symbol	Units	3/ ₈	1/2	⁵ /8	³ /4	7/ ₈	1	1 ¹ /4		
Minimum embedm	ent		h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)		
Maximum embedn	nent		h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (635)		
ture range Δ: 176°F².³	Characteristic bond s	trength in uncracked concrete	Tk,uncr	psi (N/mm²)	2,475 (17.1)	2,400 (16.5)	2,315 (16.0)	2,235 (15.4)	2,155 (14.9)	2,075 (14.3)	1,915 (13.2)		
Tempera 1 110°F /	Characteristic bond s	trength in cracked concrete	T _{k,cr}	psi (N/mm²)	1,150 (7.9)	1,415 (9.8)	1,455 (10.0)	1,515 (10.4)	1,535 (10.6)	1,555 (10.7)	1,550 (10.7)		
erature je B: 153°F²,₃	Characteristic bond s	trength in uncracked concrete	Tk,uncr	psi (N/mm²)	2,845 (19.6)	2,755 (19.0)	2,665 (18.4)	2,570 (17.7)	2,480 (17.1)	2,385 (16.5)	2,205 (15.2)		
Tempe rang 110°F /	Characteristic bond s	trength in cracked concrete	Tk,cr	psi (N/mm²)	1,325 (9.1)	1,630 (11.2)	1,675 (11.5)	1,740 (12.0)	1,765 (12.2)	1,785 (12.3)	1,785 (12.3)		
erature je C: 176°F²₃	Characteristic bond s	trength in uncracked concrete	Tk,uncr	psi (N/mm²)	2,325 (16.0)	2,250 (15.5)	2,175 (15.0)	2,100 (14.5)	2,025 (14.0)	1,950 (13.4)	1,800 (12.4)		
Tempe rang 122°F /	Characteristic bond s	trength in cracked concrete	Tk, cr	psi (N/mm²)	1,145 (7.9)	1,390 (9.6)	1,400 (9.6)	1,420 (9.8)	1,440 (9.9)	1,460 (10.1)	1,455 (10.0)		
	Dry Concrete	Anchor category	-	-		1							
	Dry Concrete	Resistance modification factor	Rd	-				1.00					
	Water-saturated	Anchor category	-	-				1					
CAC ⁴ cleaning	Concrete	Resistance modification factor	R _{ws}	-				1.00					
one cleaning		Anchor category	-	-				3					
	Water-filled holes	Resistance modification factor	R _{wf}	-				0.75					
		Modification factor for water filled holes	Kwf	-				1.0					
	Dry Constate	Anchor category	-	-				1					
	Dry Concrete	Resistance modification factor	R _d	-				1.00					
	Water-saturated	Anchor category	-	-				2					
HDB ⁴ cleaning	Concrete	Resistance modification factor	R _{ws}	-				0.8	5				
TIDD ciculing		Anchor category	-	-	Not			3					
	Water-filled holes	Resistance modification factor	R _{wf}	-	applicable			0.7	5				
Modification factor for water filled holes			K _{wf} - 0.87 0.91 0.95					1.0					
Reduction factor for	eduction factor for seismic tension					1		0.98	0.97	0.95	0.92		

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f_c / 2500)^{0.1} [For **SI**: (f_c / 17.2)^{0.1}].

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 10 percent for temperature range A and B and by 16 percent for temperature range C.

³Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C);

Temperature range B: Maximum short term temperature = 153° F (67° C), maximum long term temperature = 110° F (43° C); **Temperature range C**: Maximum short term temperature = 176° F (80° C), maximum long term temperature = 122° F (50° C);

⁴CAC: compressed air cleaning see Figure 3; HDB: cleaning during drilling action with hollow drill bit system

							Nomina	l Bar Size	Bar Size				
DES	IGN INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10		
Rein	forcing bar O.D.	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.6)	1.250 (31.8)		
Rein secti	forcing bar effective cross- onal area	Ase	in.² (mm²)	0.110 (71)	0.200 (129)	0.310 (200)	0.440 (284)	0.600 (387)	0.790 (510)	1.000 (645)	1.270 (819)		
6	Nominal strength as governed by steel	Nsa	lb (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.0)	54,000 (240.0)	71,100 (316.0)	90,000 (400.0)	114,300 (508.0)		
', A99(strength (for a single anchor)	Vsa	lb (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)		
15, A767 stade 60	Reduction factor for seismic shear	𝔅V,seis	-				0	.76					
TM A6 G	Resistance modification factor for tension ²	R	-		0.70								
AS	Resistance modification factor for shear ²	R	-		0.65								
		Nsa	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600		
0	governed by steel strength (for a single		(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(452.0)		
de 6		V	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960		
Gra	anchor)	V sa	(kN)	(23.5)	(42.7)	(66.2)	(93.9)	(128.1)	(168.7)	(213.5)	(271.2)		
A706	Reduction for seismic shear	a _{V,seis}		0.76									
ASTM	Resistance modification factor for tension ²	R					C	0.80					
	Resistance modification factor for shear ²	R					().75					
	Nominal strength as	Nsa	lb (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)						
ade 40	(for a single anchor)	Vsa	lb (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	In Grade 40	accordance w bars are furnis	/ith ASTM A6 ⁻ shed only in s	15, izes No. 3		
STM A615 Grad	Reduction factor for seismic shear	𝔅V,seis	-		0.7	76			through	n No. 6			
	Resistance modification factor for tension ²	R	-				0	0.70					
	Resistance modification factor for shear ²	R	-	0.65									

¹Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3. ²The tabulated value of the material resistance factors & and &, and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

³In accordance with ASTM A615, Grade 40 bars are furnished only in sizes No. 3 through No. 6.

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH ALL DRILLING METHODS¹

ESIGN INFORMATION	Symbol	Unite				Nomir	nal Bar Size				
DESIGN INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	
Effectiveness factor for cracked concrete	k _{c,cr}	in-lb (SI)					17 (7)				
Effectiveness factor for uncracked concrete	k _{c,uncr}	inlb. (SI)					24 (10)				
Min. anchor spacing	S _{min}	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 ¹ / ₈ (79)	3 ³ / ₄ (95)	4 ³ / ₈ (111)	5 (127)	5 ⁵ / ₈ (143)	6 ¹ / ₄ (159)	
Min. edge spacing ⁴	C _{min}	in. (mm)	1 ⁵ / ₈ (41)	1 ³ / ₄ (44)	2 (51)	2 ³ / ₈ (60)	2 ¹ / ₂ (64)	2 ³ / ₄ (70)	3 (76)	3 ¹ / ₄ (82)	
Min. member thickness	h _{min}	in. (mm)	$\frac{h_{ef} + 1^{1}/_{4}}{(h_{ef} + 30)} \qquad \qquad h_{ef} + 2d_{0}^{3}$								
Critical edge spacing – splitting (for uncracked concrete) ²	C _{ac}	-					2·h _{ef}				
Critical anchor spacing – splitting	S _{ac}	-					2·c _{ac}				
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-		1.00							
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-	1.00								

¹Additional setting information is described in Figure 3, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. ³d₀ = hole diameter.

⁴The edge distances, *c_{min}* less than the values given in the table may be reduced subject to the anchor spacing, *s_{min}* in accordance with Installation Torque Subject to Edge Distance Section.

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR WÜRTH HOLLOW CARBIDE DRILL BIT)¹

		MATION	Querra had	Unite			Nomin	al Rod D	1 Diameter (inch)					
	DESIGN INFOR	MATION	Symbol	Units	No.3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10		
Minimum embedm	nent		h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)		
Maximum embedn	nent		h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	22 ¹ / ₂ (572)	25 (635)		
ture range ∖: 176°F².₃	Characteristic bond s	trength in uncracked concrete	Tk,uncr	psi (N/mm²)	2,060 (14.2)	2,035 (14.0)	2,015 (13.9)	1,990 (13.7)	1,965 (13.6)	1,945 (13.4)	1,920 (13.2)	1,895 (13.1)		
Tempera /	Characteristic bond s	Characteristic bond strength in cracked concrete			1,350 (9.3)	1,740 (12.0)	1,725 (11.9)	1,695 (11.7)	1,680 (11.6)	1,650 (11.4)	1,635 (11.3)	1,605 (11.1)		
erature je B: 153°F ^{2,3}	Characteristic bond s	Tk,uncr	psi (N/mm²)	2,365 (16.3)	2,340 (16.1)	2,315 (16.0)	2,285 (15.8)	2,260 (15.6)	2,235 (15.4)	2,205 (15.2)	2,180 (15.0)			
Characteristic bond strength in cracked concrete				psi (N/mm²)	1,550 (10.7)	2,000 (13.8)	1,985 (13.7)	1,945 (13.4)	1,930 (13.3)	1,895 (13.1)	1,880 (13.0)	1,845 (12.7)		
⊧rature le C: 176°F ^{2,3}	Characteristic bond s	trength in uncracked concrete	Tk,uncr	psi (N/mm²)	1,935 (13.3)	1,915 (13.2)	1,890 (13.0)	1,870 (12.9)	1,845 (12.7)	1,825 (12.6)	1,805 (12.4)	1,780 (12.3)		
Tempe rang 122°F /	Characteristic bond s	Tk,cr	psi (N/mm²)	1,340 (9.2)	1,635 (11.4)	1,620 (11.2)	1,590 (11.0)	1,580 (10.9)	1,550 (10.7)	1,535 (10.6)	1,510 (10.4)			
	Dry Conoroto	Anchor category	-	-		1								
	Dry Concrete	Resistance modification factor	Rď	-		1.00								
	Water-saturated	Anchor category	-	-		1								
CAC ⁴ cleaning	Concrete	Resistance modification factor	R _{ws}	-				1.0	00					
g		Anchor category	-	-				3	}					
	Water-filled holes	Resistance modification factor	R _{wf}	-				0.7	75					
		Modification factor for water filled holes	K_{wf}	-				1.	0					
	Dry Concrete	Anchor category	-	-				1						
	Dry Concrete	Resistance modification factor	R _d	-				1.0	00					
	Water-saturated	Anchor category	-	-					2					
HDB ⁴ cleaning	Concrete	Resistance modification factor	R _{ws}	-					0.85					
		Anchor category	-	-	Not				3					
	Water-filled holes	Resistance modification factor	R _{wf}	-	applicable				0.75					
		Modification factor for water filled holes	K_{wf}	-		0.86	0.91	0.95	0.95 1					
Reduction factor for	or seismic tension	⊂(N, seis	-		1 0.98 0.97 0.95				0.	92				

¹Bond strength values correspond to concrete compressive strength f'c = 2,500 psi. For concrete compressive strength, f'c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f'c/2500)^{0.1} [For SI: (f'c/17.2)^{0.1}].

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 10 percent for temperature range A and B and by 16 percent for temperature range C. ³Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly

constant over significant periods of time.

Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C);

Temperature range B: Maximum short term temperature = 153° F (67° C), maximum long term temperature = 110° F (43° C); **Temperature range C**: Maximum short term temperature = 176° F (80° C), maximum long term temperature = 122° F (50° C).

⁴CAC: compressed air cleaning see Figure 3; HDB: cleaning during drilling action with hollow drill bit system

						Ν	Iominal Rod I	minal Rod Diameter (mm)							
DESI	GN INFORMATION	Symbol	Units	M8	M10	M12	M16	M20	M24	M27	M30				
Threa	ided rod O.D.	d	mm (in.)	8 (0.31)	10 (0.39)	12 (0.47)	16 (0.63)	20 (0.79)	24 (0.94)	27 (1.06)	30 (1.18)				
Threa sectio	ided rod effective cross- onal area	Ase	mm² (in.²)	36.6 (0.057)	58.0 (0.090)	84.3 (0.131)	157 (0.243)	245 (0.380)	353 (0.547)	459 (0.711)	561 (0.870)				
	Nominal strength as governed by steel	N _{sa}	kN (lb)	18.3 (4,114)	29.0 (6,518)	42.2 (9,473)	78.5 (17,643)	122.5 (27,532)	176.5 (39,668)	229.5 (51,580)	280.5 (63,043)				
s 5.8	strength (for a single anchor)	Vsa	kN (lb)	11.0 (2,648)	14.5 (3,260)	25.3 (5,684)	47.1 (10,586)	73.5 (16,519)	105.9 (23,801)	137.7 (30,948)	168.3 (37,826)				
I Class	Reduction factor for seismic shear	α _{V,seis}	-				0.7	78							
ISO 898-	Resistance modification reduction factor for tension ²	R	-		0.70										
	Resistance modification reduction factor for shear ²	R	-	0.65											
m	Nominal strength as governed by steel	N _{sa}	kN (lb)	29.3 (6,582)	46.4 (10,428)	67.4 (15,157)	125.6 (28,229)	196 (44,051)	282.4 (63,470)	367.2 (82,528)	448.8 (100,868)				
ass 8.6	strength (for a single anchor)	Vsa	kN (lb)	17.6 (3,949)	23.0 (5,216)	40.5 (9,094)	75.4 (16,937)	117.6 (26,431)	169.4 (38,082)	220.3 (49,517)	269.3 (60,521)				
8-1 Cl	Reduction factor for seismic shear	α _{V,seis}	-				0.7	78							
SO 89	Resistance modification factor for tension ²	R	-				0.7	70							
-	Resistance modification factor for shear ²	R	-				0.6	65							
	Nominal strength as governed by steel	Nsa	kN (lb)	25.6 (5,760)	40.6 (9,125)	59 (13,263)	109.9 (24,700)	171.5 (38,545)	247.1 (55,536)	229.5 (51,580)	280.5 (63,043)				
-1, steel ³	strength (for a single anchor)	Vsa	kN (lb)	15.4 (3,456)	20.3 (4,564)	35.4 (7,958)	65.9 (14,820)	102.9 (23,127)	148.3 (33,322)	137.7 (30,948)	168.3 (37,826)				
ISO 3506-1 A4 stainless st	Reduction factor for seismic shear	α _{V,seis}	-				0.7	78							
	Resistance modification factor for tension ²	R	-				0.7	70							
	Resistance modification factor for shear ²	R	-	0.65											

TABLE 10-STEEL DESIGN INFORMATION FOR METRIC THREADED ROD¹

¹Values provided for common rod material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3. ²The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division

B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

³A4-70 Stainless steel (M8-M24); A4-50 Stainless steel (M27-M30).

TABLE 11-CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH ALL **DRILLING MEHTODS¹**

ESIGN INFORMATION	Symbol	Symbol U	Symbol Units	Units Nominal Rod Diameter (mm)											
DESIGN INFORMATION	Symbol	Units	M8	M10	M12	M16	M20	M24	M27	M30					
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)					7 (17)								
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)					10 (24)								
Min. anchor spacing	Smin	mm (in.)	40 (1 ⁵ / ₈)	50 (2)	60 (2 ³ / ₈)	75 (3)	95 (3 ³ / ₄)	115 (4 ¹ / ₂)	125 (5)	140 (5 ¹ / ₂)					
Min, edge distance	6.1	mm	35 (1 ³ / ₈)	40 (1 ⁵ / ₈)	45	50 (2)	60 (2 ³ / ₈)	65 (2 ¹ / ₂)	75 (3)	80 (3 ¹ / ₈)					
Min. edge distance	Cmin	(in.)			(1 ³ / ₄)	See Installation Torque Subject to Edge Distance Section of this listing report for smaller edge distance with 0.45 T _{max}									
Min. member thickness	h _{min}	mm (in.)		h_{ef} + 30 (h_{ef} + 1 ¹ / ₄)				$h_{ef} + 2d_0^{3}$							
Critical edge distance - splitting (for uncracked concrete) ²	Cac	-					2∙h _{ef}								
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-					1.00								
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-	1.00												

¹Additional setting information is described in Figure 3, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. ${}^{3}d_{0}$ = hole diameter.

TABLE 12-BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR WÜRTH HOLLOW CARBIDE DRILL BIT)¹

			0	11.24			Nomi	Nominal Rod Diameter (inch)							
	DESIGN INFOR	MATION	Symbol	Units	M8	M10	M12	M16	M20	M24	M27	M30			
Minimum embedm	nent		h _{ef,min}	mm (in.)	60 (2.4)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)			
Maximum embedr	nent		h _{ef,max}	mm (in.)	120 (4.7)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)			
ure range ∖: 176°F²,₃	Characteristic bond s	trength in uncracked concrete	Tk,uncr	psi (N/mm²)	2,515 (17.3)	2,465 (17.0)	2,415 (16.6)	2,315 (16.0)	2,215 (15.3)	2,110 (14.6)	2,035 (14.0)	1,960 (13.5)			
Temperat F	Characteristic bond s	trength in cracked concrete	T _{k,cr}	psi (N/mm²)	1,130 (7.8)	1,165 (8.0)	1,405 (9.7)	1,455 (10.0)	1,520 (10.5)	1,550 (10.7)	1,570 (10.8)	1,570 (10.8)			
erature ge B: 153°F ^{2,3}	Characteristic bond s	trength in uncracked concrete	Tk,uncr	psi (N/mm²)	2,890 (19.9)	2,835 (19.5)	2,775 (19.1)	2,660 (18.3)	2,545 (17.5)	2,425 (16.7)	2,340 (16.1)	2,255 (15.5)			
Tempe ranç 110°F /	Characteristic bond s	Tk,cr	psi (N/mm²)	1,300 (9.0)	1,335 (9.2)	1,615 (11.1)	1,675 (11.5)	1,750 (12.1)	1,780 (12.3)	1,805 (12.4)	1,805 (12.4)				
erature je C: 176°F ^{2,3}	Characteristic bond s	trength in uncracked concrete	Tk,uncr	psi (N/mm²)	2,365 (16.3)	2,315 (16.0)	2,270 (15.6)	2,175 (15.0)	2,080 (14.3)	1,985 (13.7)	1,915 (13.2)	1,840 (12.7)			
Tempe rang 122°F /	Characteristic bond s	Tk,cr	psi (N/mm²)	1,125 (7.7)	1,155 (8.0)	1,380 (9.5)	1,400 (9.6)	1,430 (9.9)	1,455 (10.0)	1,475 (10.2)	1,475 (10.2)				
	Dr. Constate	Anchor category	-	-	1										
	Dry Concrete	Resistance modification factor	R _d	-	1.00										
	Water-saturated	Anchor category	-	-	1										
CAC ⁴ cleaning	Concrete	Resistance modification factor	R _{ws}	-				1.0	00						
orte oleaning		Anchor category	-	-				3							
	Water-filled holes	Resistance modification factor	R _{wf}	-		0.75									
		Modification factor for water filled holes	Kwf	-				1.	0						
	Dr. Constate	Anchor category	-	-				1							
	Dry Concrete	Resistance modification factor	R _d	-				1.0	00						
	Water-saturated	Anchor category	-	-					2	2					
HDB ⁴ cleaning	Concrete	Resistance modification factor	R _{ws}	-					3.0	35					
TIDD oloaning		Anchor category	-	-	Not app	licable			3	3					
	Water-filled holes	Resistance modification factor	R _{wf}	-		-	0.75								
		Modification factor for water filled holes	K _{wf}	-				0.91	0.96	96 1					
Reduction factor for	or seismic tension	C(N, seis	-		1		0.99	0.98	0.96	0.94	0.93				

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f'c/2500)^{0.1} [For SI: (f'c/17.2)^{0.1}].

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 10 percent for temperature range A and B and by 16 percent for temperature range C.

3Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C);

Temperature range B: Maximum short term temperature = 153° F (67° C), maximum long term temperature = 110° F (43° C); **Temperature range C**: Maximum short term temperature = 176° F (80° C), maximum long term temperature = 122° F (50° C);

⁴CAC: compressed air cleaning see Figure 3; HDB: cleaning during drilling action with hollow drill bit system

DEOL	ESIGN INFORMATION	Querry has l	11				No	ominal Bar S	lize				
DESI	GNINFORMATION	Symbol	Units	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Reinf	orcing bar O.D.	d	mm (in.)	8 (0.315)	10 (0.394)	12 (0.472)	14 (0.551)	16 (0.630)	20 (0.787)	25 (0.984)	28 (1.102)	32 (1.260)	
Reinforcing bar effective cross-sectional area		Ase	mm² (in.²)	50 (0.078)	78.5 (0.112)	113.1 (0.175)	153.9 (0.239)	201.1 (0.312)	314.2 (0.487)	490.9 (0.761)	615.8 (0.954)	804.2 (1.247)	
0	Nominal strength as governed by steel	N _{sa}	kN (lb)	27.5 (6,182)	43.2 (9,739)	62.2 (14,024)	84.7 (19,088)	110.6 (24,932)	172.8 (38,956)	270.0 (60,868)	338.7 (76,353)	442.3 (99,727)	
	strength (for a single anchor)	V _{sa}	kN (lb)	16.5 (3,709)	25.9 (5,843)	37.3 (8,414)	50.8 (11,453)	66.4 (14,959)	103.7 (23,373)	162.0 (36,521)	203.2 (45,812)	265.4 (59,836)	
BSt 5	Reduction factor for seismic shear	α _{V,seis}	-	0.75									
DIN 488 B	Resistance modification factor for tension ²	R	-		0.70								
	Resistance modification factor for shear ²	R	-	0.65									

TABLE 13—STEEL DESIGN INFORMATION FOR METRIC REINFORCING BARS¹

¹Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3. ²The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

TABLE 14—CONCRETE BREAKOUT DESIGN INFORMATION METRIC REINFORCING BARS IN HOLES DRILLED WITH ALL DRILLING METHODS¹

ESIGN INFORMATION	Symbol	Symbol Uni	Unite					Nominal Ba	r Size			
DESIGN INFORMATION	Symbol	Units	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)					7 (17)					
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)					10 (24)					
Min. anchor spacing	S _{min}	mm (in.)	40 (1 ⁵ / ₈)	50 (2)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	75 (3)	95 (3 ³ / ₄)	120 (4 ⁵ / ₈)	130 (5 ¹ / ₄)	150 (5 ⁷ / ₈)	
Min. edge spacing ⁴	Cmin	mm (in.)	35 (1 ³ / ₈)	40 (1 ⁵ / ₈)	45 (1 ³ / ₄)	50 (2)	50 (2)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	75 (3)	85 (3 ¹ / ₈)	
Min. member thickness	h _{min}	mm (in.)		$h_{ef} + 30$ $(h_{ef} + 1^{1}/4)$)	h_{ef} + 2 d_0 ³						
Critical edge spacing – splitting (for uncracked concrete) ²	Cac	-					2·h _{ef}					
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-		1.00								
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-		1.00								

¹Additional setting information is described in Figure 3, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. ³d₀ = hole diameter.

⁴The edge distances, *c_{min}* less than the values given in the table may be reduced subject to the anchor spacing, *s_{min}* in accordance with Installation Torque Subject to Edge Distance Section.

TABLE 15—BOND STRENGTH DESIGN INFORMATION METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR WÜRTH HOLLOW CARBIDE DRILL BIT)¹

				Symbol	Unito		Nominal Rod Diameter (inch)							
		DESIGN IN	FORMATION	Symbol	Units	Ø 8	ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Minimum e	embedme	ent		h _{ef,min}	mm (in.)	60 (2.4)	60 (2.4)	70 (2.8)	75 (3.0)	80 (3.1)	90 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)
Maximum	embedm	ent		h _{ef,max}	mm (in.)	120 (4.7)	200 (7.9)	240 (9.4)	280 (11.0)	320 (12.6)	400 (15.7)	500 (19.7)	560 (22.0)	640 (25.2)
ture range A:	176°F ^{2,3}	Characteri concrete	stic bond strength in uncracked	Tk,uncr	psi (N/mm²)	2,070 (14.3)	2,055 (14.2)	2,040 (14.1)	2,025 (14.0)	2,010 (13.9)	1,985 (13.7)	1,945 (13.4)	1,925 (13.3)	1,895 (13.1)
Temperal	110°F/	Characteri concrete	stic bond strength in cracked	Tk,cr	psi (N/mm²)	1,345 (9.3)	1,345 (9.3)	1,740 (12.0)	1,735 (12.0)	1,725 (11.9)	1,690 (11.7)	1,650 (11.4)	1,620 (11.2)	1,605 (11.1)
srature je B: 153°F²³		Characteri concrete	stic bond strength in uncracked	Tk,uncr	psi (N/mm²)	2,380 (16.4)	2,365 (16.3)	2,345 (16.2)	2,330 (16.1)	2,315 (15.9)	2,280 (15.7)	2,235 (15.4)	2,210 (15.2)	2,180 (15.0)
Characteristic bond			stic bond strength in cracked	T _{k,cr}	psi (N/mm²)	1,550 (10.7)	1,550 (10.7)	2,000 (13.8)	1,995 (13.7)	1,985 (13.7)	1,945 (13.4)	1,900 (13.1)	1,865 (12.8)	1,845 (12.7)
rature e C: 176°F²³		Characteri concrete	stic bond strength in uncracked	Tk,uncr	psi (N/mm²)	1,945 (13.4)	1,930 (13.3)	1,920 (13.2)	1,905 (13.1)	1,890 (13.0)	1,865 (12.8)	1,830 (12.6)	1,810 (12.5)	1,780 (12.3)
Tempe	122°F /	Characteri concrete	stic bond strength in cracked	Tk,cr	psi (N/mm²)	1,340 (9.2)	1,340 (9.2)	1,635 (11.3)	1,630 (11.2)	1,620 (11.2)	1,590 (10.9)	1,550 (10.7)	1,525 (10.5)	1,505 (10.4)
	Day	Anchor category		-	-		1							
	Diy	JUNCIELE	Resistance modification factor	R _d	-					1.00				
	Water	-saturated	Anchor category	-	-					1				
CAC ⁴	Co	oncrete	Resistance modification factor	R _{ws}	-					1.00				
cleaning			Anchor category	-	-					3				
	Water-	filled holes	Resistance modification factor	R _{wf}	-					0.75				
			Modification factor for water filled holes	K_{wf}	-					1.0				
	Day	Conoroto	Anchor category	-	-					1				
	Dry C	Joncrete	Resistance modification factor	R _d	-					1.00				
	Water	-saturated	Anchor category	-	-						2			
HDB ⁴	Co	oncrete	Resistance modification factor	R _{ws}	-						0.85			
cleaning			Anchor category	-	-	Notan	nlicable				3			
	Water-	filled holes	Resistance modification factor	R _{wf}	-	Notap	piloabio				0.75			
	vvalel-		Modification factor for water filled holes	K _{wf}	-			0.86	0.91	0.96	0.96 1			
Reduction	Reduction factor for seismic tension				-			0.99 0.98 0.96 0.94				0.94	0.93	

1Bond strength values correspond to concrete compressive strength f'c = 2,500 psi. For concrete compressive strength, f'c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f_c/2500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$].

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 10 percent for temperature range A and B and by 16 percent for temperature range C. ³Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly

constant over significant periods of time.

Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 110°F (43°C); Temperature range B: Maximum short term temperature = 153°F (67°C), maximum long term temperature = 110°F (43°C); Temperature range C: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C). ⁴CAC: compressed air cleaning see Figure 3; HDB: cleaning during drilling action with hollow drill bit system.

Conditions of listing:

- 1. The listing report addresses only conformance with the standards and code sections noted above.
- 2. Approval of the product's use is the sole responsibility of the local code official.
- 3. The listing report applies only to the materials tested and as submitted for review by ICC-ES.
- Anchor sizes, dimensions, minimum embedment depths and other installation parameters are as set forth in this listing report.
- 5. Anchors must be limited to use in cracked and uncracked normal-weight concrete and lightweight concrete having a specified compressive strength, *f*_c, of 17.2 MPa (2,500 psi) to 58.6 MPa (8,500 psi).
- 6. The values of *f*'_c, used for calculation purposes must not exceed 55 MPa.
- 7. Limit states design values must be established in accordance with this listing report.
- 8. The use of fatigue or shock loading for these anchors under such conditions is beyond the scope of this listing report.
- 9. Anchors may be used to resist short-term loading due to wind or seismic forces in locations designed according to NBCC 2015.
- 10. Where not otherwise prohibited in the code as referenced in CSA A23.3-14, Würth WIT-PE 1000 Adhesive Anchor System are permitted for use with fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:
 - a. Anchors are used to resist wind or seismic forces only.
 - b. Anchors that support a fire-resistance-rated envelope or a fire- resistance-rated membrane are protected by approved fire-resistance- rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - c. Anchors are used to support nonstructural elements.
- 11. Use of zinc-coated carbon steel anchors is limited to dry, interior locations.
- 12. Use of anchors made of stainless steel as specified in this report are permitted for exterior exposure and damp environments.
- 13. Steel anchoring materials in contact with preservative-treated wood and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- 14. Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program, and the certification shall include written and performance tests in accordance with the ACI/CRSI Adhesive Anchor Installer Certification program, or equivalent in accordance with CSA A23.3-14 D.10.2.3. The installation shall be continuously inspected during installation by an inspector specially approved for that purpose. The special inspector shall furnish a report to the licensed design professional and building official that the work covered by the report has been performed and that the materials used and the installation procedures used conform with the approved contract documents and the MPII in accordance with CSA A23.3-14 D.10.2.4.
- 15. Würth WIT-PE 1000 adhesive anchors may be used to resist tension and shear forces in floor, wall for overhead installations into concrete with a temperature between 40°F and 104°F (5°C and 40°C) for threaded rods and rebar.
- 16. Anchors shall not be used for installations where the concrete temperature can vary from 40°F (5°C) or less to 80°F (27°C) or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building façade systems and other applications subject to direct sun exposure.