

www.icc-es.org | (800) 423-6587 | (562) 699-0543

ICC-ES Listing Report ELC-4466

A Subsidiary of the International Code Council®

Reissued May 2024 This listing is subject to renewal May 2025.

CSI: DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

> DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

Product Certification System:

The ICC-ES product-certification system includes evaluating reports of tests of standard manufactured product, prepared by accredited testing laboratories and provided by the listee, to verify compliance with applicable codes and standards. The system also involves factory inspections, and assessment and surveillance of the listee's quality system.

- Product: Würth Wit-Uh 300 Adhesive Anchor System in Cracked and Uncracked Concrete
- Listee: ADOLF WÜRTH GmbH & CO. KG

Compliance with the following standards:

Annex D, Anchorage, of CSA A23.3-14, Design of Concrete Structures, CSA Group.

Compliance with the following codes:

Würth WIT-UH 300 adhesive anchor system in cracked and uncracked concrete, as described in this listing report, are in conformance with CSA A23.3-14, Annex D, as referenced in the applicable section of the following code edition:

National Building Code of Canada[®] 2015 Applicable Section: Division B, Part 4, Section 4.3.3.

Description of adhesive anchor system:

The Würth WIT-UH 300 Adhesive Anchor System comprised of Würth WIT-UH 300 two-component adhesive filled in cartridges, static mixing nozzles, dispensing tools, hole cleaning equipment, and adhesive injection accessories. The Würth WIT-UH 300 adhesive may be used with continuously threaded steel rods or deformed steel reinforcing bars. The primary components of the Würth WIT-UH 300 Adhesive Anchor System, including the Würth WIT-UH 300 adhesive cartridge, static mixing nozzle, and steel anchor elements, are shown in Figure 1.

REINFORCING BAR

THE REPORT OF THE PROPERTY OF

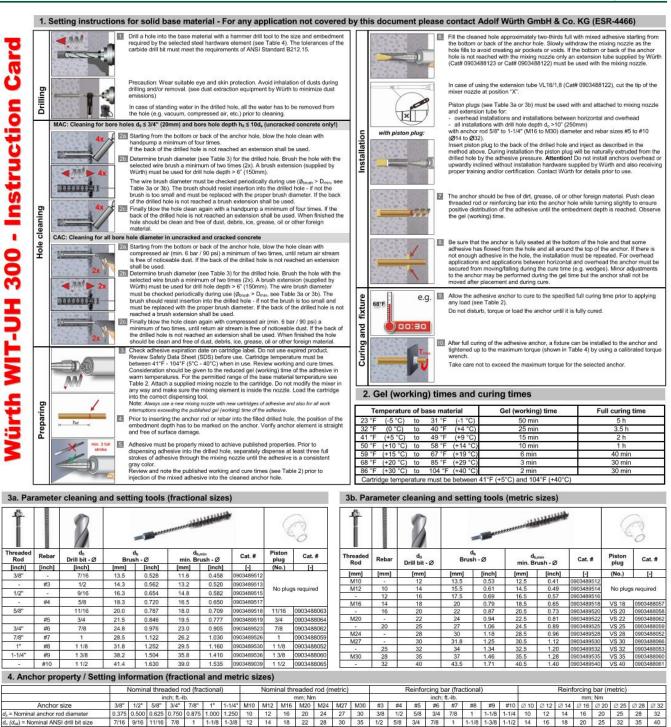
Listings are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the listing or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this listing, or as to any product covered by the listing.

VARIOUS AVAILABLE TWO-COMPONENT CARTRIDGES

ADOLF WÜRTH GmbH & CO. KG DISPENSER

STATIC MIXING NOZZLE

FIGURE 1— WÜRTH WIT-UH 300 ADHESIVE ANCHOR SYSTEM INCLUDING TYPICAL STEEL ANCHOR ELEMENTS


The Würth WIT-UH 300 adhesive is an injectable two-component vinylester-urethane hybrid adhesive. The two components are kept separate by means of a labelled dual-cylinder cartridge. The two components combine and react when dispensed through a static mixing nozzle, supplied by Adolf Würth GmbH & Co. KG, which is attached to the cartridge. Würth WIT-UH 300 is available in: coaxial cartridge: 5-ounce (150 mL), 9.5-ounce (280 mL) up to 11-ounce (333 mL) and 13 up to 14-ounce (380 up to 420 mL) and side-by-side cartridges: 8-ounce (235 mL), 11.5-ounce (345 mL) up to 12-ounce (360 mL) and 28-ounce (825 mL). Each cartridge label is marked with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened cartridge stored in a dry, dark, and cool environment.

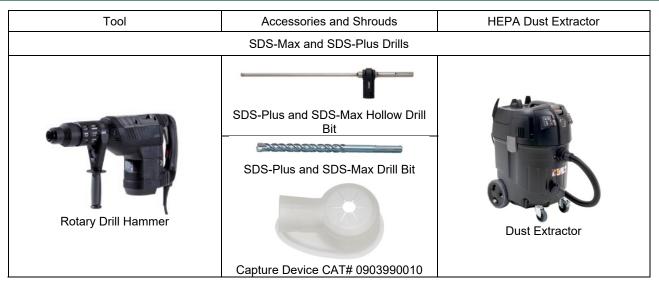
Identification:

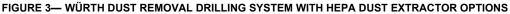
- 1. Würth WIT-UH 300 adhesive is identified by packaging labelled with the company's name (Adolf Würth GmbH & Co. KG) and address, anchor name, the lot number, the expiration date, and the evaluation report; company name; listing report number (ELC-4466), and the ICC-ES listing mark. Threaded rods, nuts, washers, and deformed reinforcing bars are standard steel anchor elements and must conform to applicable national or international specifications as set forth in Tables 2 and 3 of this report or equivalent.
- 2. The report holder's contact information is the following:

ADOLF WÜRTH GmbH & CO. KG
REINHOLD-WÜRTH-STRASSE 12-17
74653 KÜNZELSAU
GERMANY
+49 (7940) 15 0
www.wuerth.de
info@wuerth.de

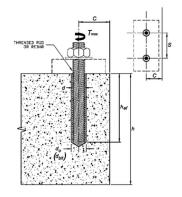
Installation: The installation parameters are illustrated in Figure 4 and Table 1. Installation of the Würth WIT-UH 300 adhesive anchor system must conform to the manufacturer's printed installation instructions (MPII) included in each unit package as described in Figure 2. The adhesive anchor system may be used for upwardly inclined orientation applications (e.g. overhead). Upwardly inclined and horizontal orientation applications are to be installed using piston plugs in accordance with the MPII as shown in Figure 2 of this report. The piston plugs must be used with an appropriate hole diameter size and attached to the mixing nozzle and extension tube supplied by Adolf Würth GmbH & Co. KG.

Parameter valid for anchors	8	3	69	81 - R	3 2	2	22	80 - 80	- 2	3	82	8K - 8	1 2	2	22	81 82	5 - 6	s - 1	3	69 - 28	52	a. 83	8	59 - 28	5	S - 8	3	632 23		
T _{max} = Maximum torque	1520	30	44	66	96	147	221	20	40	80	120	170	250	300	15 ²⁾	30	44	66	96	147	185	221	20	40	45	80	120	175	250	300
h _{atmin} = Minimum embedment	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	5	60	70	80	90	96	108	120	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5	60	70	75	80	90	100	112	128
h _{et.max} = Maximum embedment	7-1/2	10	12-1/2	15	17-1/2	20	25	200	240	320	400	480	540	600	7-1/2	10	12-1/2	15	17-1/2	20	22-1/2	25	200	240	280	320	400	500	560	640
s _{min} = Min. spacing	1-7/8	2-1/2	3	3-5/8	4-1/4	4-3/4	5-7/8	50	60	80	100	120	135	150	1-7/8	2-1/2	3	3-5/8	4-1/4	4-3/4	5-1/4	5-7/8	50	60	70	80	100	125	140	160
cmn = Min. edge distance with 100% Tmax	1-5/8	1-3/4	2	2-3/8	2-1/2	2-3/4	3-1/4	45	45	55	60	70	75	80	1-5/8	1-3/4	2	2-3/8	2-1/2	2-3/4	3	3-1/4	45	45	50	55	60	70	75	85
cmn = Min. edge distance with 45% Tmax ¹⁾		-		1.	75		2.75	1			4	15		70				1.	75		2.	75		-		4	15		7	0
h _{min} = Minimum member thickness	haf +	1-1/4	1	1	har + 20	6	62	h _{af} +	30		1	her + 20	6	8	haf +	1-1/4			has +	2do		-	hut	+ 30			h _{ef} +	2do		
Parameter valid for post-installed rebar	8							84							53	51 Ø	v s		8	10 10		1 - 2	8	10 10			8	10 10		_
h _{e(min} = Minimum embedment															2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5	60	70	75	80	90	100	112	128
herman = Maximum embedment (PIR)				100							10				22-1/2	30	37-1/2	45	52-1/2	60	67-1/2	75	600	720	840	960	1200	1500	1680	1920


 $n_{ecnax} = \text{Maximum embedment (FIN)}$ $s_{min} = 5xd_s$. ²⁾ for ASTM 36 and F1554 Grade 36, T_{max} = 11 ft.-lb.


5. WIT-UH 300 adhesive anchor system and accessories

6. Post-installed rebar hef ≥ 20d


Injection too	bls	Cartridge system	Extra mixing	Piston Plug	Handpump	Extension tube VL10/0,75	Extension with wood handle	Cartridge	Injection tools	d,	h _{ef}	Extension tube
9.5 to 11 fl. or	Cat. #0891003 – Manual tool	WIT-UH 300 5 fl. oz.	nozzles	~			-	9.5 to 11 fl. oz. 11.5 to 12 fl. oz. 13 to 14 fl. oz.	Manual tool	≤#5 ≤16 [mm]	≤ 27-1/2 [inch] ≤ 700 [mm]	
	Cat. #0891003330 - Battery tool	WIT-UH 300 9.5 to 11 fl. oz.	WIT-UH 300	600	(Cat. #0903990001)	(Cat. #0903488123)	(Cat#0903489103)		Pneumatic	≤#5 ≤ 16	≤ 39-1/2 [inch]	VL10/0,75
13 to 14 fl. oz.	Cat. #08910380 - Manual tool Cat. #0891004420 - Pneu, tool	WIT-UH 300 13 to 14	mixing nozzle Cat.	XIN	Compressed air nozzle (min. 90 psi)	Extension tube VL16/1,8	Brush extension	13 to 14 fl. oz. 28 fl. oz. 9.5 to 11 fl. oz.	tool	[mm]	≤ 1000 [mm]	(Cat.# 0903488123)
dispenser	Cat. #0891003420 - Battery tool	fl. oz.	#0903488102	$\neg \mathcal{O}$	T			11.5 to 12 fl. oz. 13 to 14 fl. oz.	Pneumatic tool	≤#8 ≤25 [mm]	≤ 27-1/2 [inch] ≤ 700 [mm]	
28 fl. oz. dispensers	Cat. #0891004825 - Pneu. tool Cat. #0891003825 - Battery tool	WIT-UH 300 28 fl. oz.		(Cat# Table 3a or 3b)	If the bore hole ground is not reached an extension shall be used.	(Cat. #0903488122)	(Cat#0903489111)	28 fl. oz.	Pneumatic	≤ #10 ≤ 32	s /5 [inch]	VL16/1,8
		Adolf Würth C						28 fl. oz. tool	tool	[mm]	≤ 1920 [mm]	Cat.#090348812

74653 Künzelsau, Germany F: +49 7940 15-1000 [Rev. c]

Anchor setting information:

FIGURE 4—INSTALLATION PARAMETERS FOR THREADED RODS AND REINFORCING BARS

TABLE 1—INSTALLATION TORQUE SUBJECT TO EDGE DISTANCE

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for edge distances less than the values given in Tables 5, 8, 11 and 14, as applicable. T_{max} is subject to the edge distance, c_{min} , and anchor spacing, s_{min} , and shall comply with the following requirements:

INSTALLATION	FORQUE SUBJECT	TO EDGE DIS	TANCE
NOMINAL ANCHOR SIZE, d	MINIMUM EDGE DISTANCE, c _{min}	MINIMUM ANCHOR SPACING, Smin	MAXIMUM TORQUE, T _{max}
⁵ / ₈ in. to 1 in. #5 to #8 M16 to M24 ø14to ø25	1.75 in. (44.5 mm)	5.4	0.45 T
1 ¹ / ₄ in. #9 to #10 M27 to M30 ø28 to ø32	2.75 in. (70 mm)	5d	0.45 · T _{max}

For values of T_{max} , see Figure 2 of this report.

Ultimate Limit States Design:

Design resistance of anchors for compliance with the 2015 NBCC must be determined in accordance with CSA A23.3-14 Annex D, and this listing report.

Design parameters are provided in Table 2 through 15 of this listing report are based on the 2015 NBCC (CSA A23.3-14). The limit states design of anchors must comply with CSA A23.3-14 D.5.1, except as required in CSA A23.3-14 D.4.3.1.

Material resistance factors must be $\phi_c = 0.65$ and $\phi_s = 0.85$ in accordance with CSA A23.3-14 Sections 8.4.2 and 8.4.3, and resistance modification factor, *R*, as given in CSA A23.3-14 Section D.5.3, and noted in Tables 4, 5, 7, 8, 10, 11, 13 and 14 of this listing report, must be used for load combinations calculated in accordance with Division B, Part 4, Section 4.1.3 of the 2015 NBCC, or Annex C of CSA A23.3-14. The nominal strength, N_{sa} or V_{sa} , in Tables 4, 7, and 10 of this listing report must be multiplied by ϕ_s and *R* to determine the

factored resistance, Nsar or Vsar.

The bond strength must be adjusted by the permissible installation condition factors for dry concrete, R_d , and water-saturated concrete, R_{ws} , water-filled holes, R_{wf} , for the corresponding installation conditions as given in Tables 6, 9, 12 and 15.

For anchors to be installed in seismic regions described in NBCC 2015. The factored resistance in shear, V_{sar} , must be adjusted by $\alpha_{V,seis}$ as given in tables 4, 7, and 10 for the corresponding anchor steel. The nominal bond strength $\eta_{k,cr}$ must be adjusted by $\alpha_{N,seis}$ as given in Tables 6, 9, 12 and 15 for threaded rods.

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL ROD MATERIALS¹

	THREADED ROD SPECIFICATION		MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH 0.2 PERCENT OFFSET, fya	f _{uta} /fya	ELONGATION, MIN. PERCENT ¹¹	REDUCTION OF AREA, MIN. PERCENT	SPECIFICATION FOR NUTS ¹²
	ASTM A193 ² Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	ASTM A194 / A563 Grade DH
	ASTM A36 ³ / F1554 ⁴ , Grade 36	psi (MPa)	58,000 (400)	36,000 (250)	1.61	23	40	ASTM A194 / A563
	ASTM F1554 ⁴ Grade 55	psi (MPa)	75,000 (515)	55,000 (380)	1.36	23	40	Grade A
TEEL	ASTM F1554 ⁴ Grade 105	psi (MPa)	125,000 (860)	105,000 (725)	1.19	15	45	
CARBON STEEL	ASTM A449⁵ (3/8" to1" dia.)	psi (MPa)	120,000 (830)	92,000 (635)	1.30	14	35	ASTM A194 / A563 Grade DH
CARE	ASTM A449⁵ (1-1/4" dia.)	psi (MPa)	105,000 (720)	81,000 (560)	1.30	14	35	
	ASTM F568M ⁶ Class 5.8 (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	A563 Grade DH DIN 934 (8-A2K) ¹³
	ISO 898-1 ⁷ Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	EN ISO 4032 Grade 6
	ISO 898-1 ⁷ Class 8.8	MPa (psi)	800 (118,000)	640 (92,800)	1.25	12	52	EN ISO 4032 Grade 8
	ASTM F593 ⁸ CW1 ³ / ₈ to ⁵ / ₈ in.	psi (MPa)	100,000 (690)	65,000 (450)	1.54	20	-	ASTM F594 Alloy
STEEL	ASTM F593 ⁸ CW2 ³ / ₄ to 1 ¹ / ₄ in.	psi (MPa)	85,000 (590)	45,000 (310)	1.89	25	-	Group 1, 2 or 3
LESS	ASTM A193/A193M ⁹ Grade B8/B8M2, Class 2B	psi (MPa)	95,000 (655)	75,000 (515)	1.27	25	40	ASTM A194/A194M
STAINLESS	ISO 3506-1 ¹⁰ A4-70 M10-M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	-	EN ISO 4032
	ISO 3506-1 ¹⁰ A4-50 M27-M30	MPa (psi)	500 (72,500)	210 (30,450)	2.38	40	-	EN ISO 4032

¹Adhesive must be used with continuously threaded carbon or stainless steel rod (all-thread) having thread characteristics complying with ANSI B1.1 UNC Coarse Thread Series.

²Standard Specification for Alloy-Steel and Stainless steel Bolting Materials for High temperature of High Pressure service and Other Special Purpose Applications.

³Standard Specification for Carbon Structural steel

⁴Standard Specification for Anchor Bolts, Steel 36, 55 and 105-ksi Yield Strength

⁵Standard Specification for Hex Cap Screws, Bolts and Studs, Heat Treated, 120/105/50 ksi (837/724/621 MPa) Minimum Tensile Strength, General Use.

⁶Standard Specification for Carbon and Alloy Steel external Threaded Metric Fasteners

⁷Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, Screws and Studs

⁸Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

⁹Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications. ¹⁰Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, Screws and Studs

¹¹Based on 2-in. (50 mm) gauge length except for ASTM A193, which is based on a gauge length of 4d.

Plauts and washers of other grades and style having specified proof load stress greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

¹³Nuts for metric rods.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS¹

REINFORCING SPECIFICATION	UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH, fya
ASTM A615 ¹ , A767 ³ , A996 ⁴	psi	90,000	60,000
Grade 60	(MPa)	(620)	(414)
ASTM A706 ² , A767 ³	psi	80,000	60,000
Grade 60	(MPa)	(550)	(414)
ASTM A615 ¹ , Grade 40	psi	60,000	40,000
	(MPa)	(415)	(275)
DIN 488 ⁵ BSt 500	MPa	550	500
	(psi)	(79,750)	(72,500)

¹Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

²Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.

⁴Standard specification for Rail-Steel and Axle-steel Deformed bars for Concrete Reinforcement.

⁵Reinforcing steel, reinforcing steel bars; dimensions and masses

³Standard specification for Zinc-Coated (Galvanized) steel Bars for Concrete Reinforcement.

TABLE 4-STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD¹

DESIGN		Cume la sal	l lm ¹⁴			Nominal	Rod Diamet	er (inch)				
DESIGN	INFORMATION	Symbol	Units	³ /8	¹ / ₂	⁵ /8	³ /4	7/8	1	1 ¹ / ₄		
Threaded	rod O.D.	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)		
Threaded	rod effective cross-sectional area	Ase	in. ²	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057	0.9691 (625)		
			(mm²) Ib	4,495	8,230	13,110	19,400	26,780	(391) 35,130	56,210		
1554,	Nominal strength as governed by steel	N _{sa}	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)		
ASTM A36/F1554, Grade 36	strength (for a single anchor)	Vsa	lb (kN)	2,695 (12.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,725 (150.0)		
Gra A	Reduction factor for seismic shear	α <i>∨,seis</i>	-				0.60					
STI	Resistance modification factor for tension ²	R	-				0.80					
A	Resistance modification factor for shear ²	R	-				0.75					
4	Nominal strength as governed by steel	Nsa	lb (kN)	5,815 (25.9)	10,645 (47.6)	16,950 (75.5)	25,090 (111.7)	34,630 (154.1)	45,430 (202.1)	72,685 (323.1)		
ASTM F1554 Grade 55	strength (for a single anchor)	V _{sa}	lb (kN)	3,490 (15.5)	6,385 (28.6)	10,170 (45.3)	15,055 (67)	20,780 (92.5)	27,260 (121.3)	43,610 (193.9)		
TM	Reduction factor for seismic shear	α _{V,seis}	-				0.60		. ,	<u>, , ,</u>		
AS	Resistance modification factor for tension ²	R	-				0.80					
	Resistance modification factor for shear ²	R	-				0.75					
, t	+ Nominal strength as governed by steel		lb (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)		
193 37 554	Nominal strength as governed by steel strength (for a single anchor)		lb	5,810	10,640	16,950	25.085	34,625	45,425	72,680		
ASTM A193 Grade B7 ASTM F1554 Grade 105	2	V _{sa} α _{V,seis}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)		
STI Gra	Reduction factor for seismic shear		-				0.60					
≺ ∢	Resistance modification factor for tension ²	R	-	0.80								
	Resistance modification factor for shear ²	R	-		17.000	07.400	0.75	55 405	70.005	101 755		
ō,	Nominal strength as governed by steel	Nsa	lb (kN)	9,300 (41.4)	17,030 (76.2)	27,120 (120.9)	40,140 (178.8)	55,405 (246.7)	72,685 (323.7)	101,755 (450.0)		
ASTM A449	strength (for a single anchor)	V _{sa}	lb (kN)	5,580 (24.8)	10,220 (45.7)	16,270 (72.5)	24,085 (107.3)	33,240 (148)	43,610 (194.2)	61,055 (270.0)		
STA	Reduction factor for seismic shear	α _{V,seis}	-				0.60					
¥	Resistance modification factor for tension ²	R	-				0.80					
	Resistance modification factor for shear ²	R	-				0.75					
v	Nominal strength as governed by steel	N _{sa}	lb (kN)	5,620 (25)	10,290 (46)	16,385 (73)	24,250 (108)	33,470 (149)	43,910 (195.5)	70,260 (312.5)		
68 8.8	strength (for a single anchor)	17	lb	3,370	6,175	9,830	14,550	20,085	26,350	42,155		
ASTM F568M Class 5.8		V _{sa}	(kN)	(15)	(27.6)	(43.8)	(64.8)	(89.4)	(117.3)	(187.5)		
STN Cla	Reduction factor for seismic shear	α _{V,seis}	-				0.60					
AS -	Resistance modification factor for tension ³	R	-				0.70					
	Resistance modification factor for shear ³	R	-		,		0.65					
M	Nominal strength as governed by steel	N _{sa}	lb (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,370 (366.4)		
ASTM F593 CW Stainless	strength (for a single anchor)	Vsa	lb (kN)	4,650 (20.7)	8,515 (37.9)	13,560 (60.3)	17,060 (75.9)	23,545 (104.7)	30,890 (137.4)	49,425 (219.8)		
M F tair	Reduction factor for seismic shear	α _{V,seis}	-	()	()	()	0.60	()	()	(= · : · 5)		
LS STI	Reduction factor for seismic shear Resistance modification factor for tension ³	R	-				0.70					
<	Resistance modification factor for shear ³	R	-				0.65					
93M 42,	Nominal strength as governed by steel	Nsa	lb (kN)	7,365 (32.8)	13,480 (60.3)	21,470 (95.6)	31,780 (141.5)	43,860 (195.2)	57,540 (256.1)	92,065 (409.4)		
ASTM A193/A193M Grade B8/B8M2, Class 2B	strength (for a single anchor)	V _{sa}	lb (kN)	4,420 (19.7)	8,090 (36.2)	12,880 (57.4)	19,070 (84.9)	26,320 (117.1)	34,525 (153.7)	55,240 (245.6)		
e E las	Reduction factor for seismic shear	α <i>v,seis</i>	-				0.60					
TM	Resistance modification factor for tension ²	R	-				0.80					

¹Values provided for common rod material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3, as

²The tabulated value of material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to ductile steel elements.

³The tabulated value of material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

TABLE 5—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

Aracked concrete	0. makes l	11			Nomin	al Rod Diamete	r (inch)							
DESIGN INFORMATION	Symbol	Units	³ /8	¹ / ₂	⁵ /8	3/4	⁷ /8	1	1 ¹ / ₄					
Effectiveness factor for cracked concrete	K _{c,cr}	in-lb (SI)				17 (7)								
Effectiveness factor for uncracked concrete	k _{c,uncr}	in-lb (SI)				24 (10)								
Min. anchor spacing	Smin	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 (76)	3 ³ / ₄ (95)	4 ¹ / ₄ (108)	4 ³ / ₄ (121)	5 ⁷ / ₈ (149)					
Min, odgo distanco		in.	1 ⁵ /8	1 ³ /4	2 (51)	2 ³ / ₈ (60)	2 ¹ / ₂ (64)	2 ³ / ₄ (70)	3 ¹ / ₄ (82)					
Min. edge distance	Cmin	(mm)	1 /8	(44)	For smaller edge distances see Table 1 of this report for reduced minimum edge distances									
Min. member thickness	h _{min}	in. (mm)	•	+ 1¹/₄ + 30)			$h_{ef} + 2d_0^{3}$							
Critical edge distance - splitting (for uncracked concrete) ²	Cac	-				2h _{ef}								
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-				1.00								
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-				1.00								

¹Additional setting information is described in Figure 4, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

 $^{3}d_{0}$ = hole diameter.

TABLE 6—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

		Sumbel	Units		No	minal R	od Diam	eter (in	ch)	
	DESIGN INFORMATION	Symbol	Units	³ /8	¹ / ₂	⁵ /8	³ /4	⁷ /8	1	1 ¹ / ₄
Minimum embedm	ent	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
Maximum embedn	nent	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (635)
Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	2,600 (17.9)	2,415 (16.6)	2,260 (15.6)	2,140 (14.8)	2,055 (14.2)	2,000 (13.8)	1,990 (13.7)
range A ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	1,040 (7.2)	1,040 (7.2)	1,110 (7.7)	1,220 (8.4)	1,210 (8.4)	1,205 (8.3)	1,145 (7.9)
Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	2,265 (15.6)	2,100 (14.5)	1,970 (13.6)	1,865 (12.8)	1,785 (12.3)	1,740 (12.0)	1,730 (11.9)
range B ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	905 (6.2)	905 (6.2)	965 (6.7)	1,060 (7.3)	1,055 (7.3)	1,050 (7.2)	995 (6.9)
Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	1,630 (11.2)	1,515 (10.4)	1,420 (9.8)	1,345 (9.3)	1,290 (8.9)	1,255 (8.6)	1,250 (8.6)
range C ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	650 (4.5)	655 (4.5)	695 (4.8)	765 (5.3)	760 (5.2)	755 (5.2)	720 (5.0)
Dry	Anchor category	-	-				1			
concrete	Permissible installation condition factor	Rd	-				1.00			
Water-saturated	Anchor category	-	-				2			
concrete	Permissible installation condition factor	R _{ws}	-				0.85			
Water-filled holes	Anchor category	-	-				3			
water-mied holes	Permissible installation condition factor	R _{wf}	-				0.75			
Reduction factor for	or seismic tension	∝N,seis	-				0.95			

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2500)^{0.10}$.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23 percent for temperature range C.

DESI	GN INFORMATION	Symbol	Units				Nominal	Bar Size			
DESI	SN INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Reinfo	orcing bar O.D.	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.6)	1.250 (31.8)
	orcing bar effective cross- nal area	Ase	in.² (mm²)	0.110 (71)	0.200 (129)	0.310 (200)	0.440 (284)	0.600 (387)	0.790 (510)	1.000 (645)	1.270 (819)
6	Nominal strength as governed by steel	Nsa	lb (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.0)	54,000 (240.0)	71,100 (316.0)	90,000 (400.0)	114,300 (508.0)
r, A99(strength (for a single anchor)	V _{sa}	lb (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)
615, A767, A996 Grade 60	Reduction factor for seismic shear	𝔅V,seis	-				0.	65			
ASTM A615, Grad	Resistance modification factor for tension ³	R	-				0.	70			
AS	Resistance modification factor for shear ³	R	-				0.	65			
		Nsa	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600
-	Nominal strength as governed by	i vsa	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(452.0)
le 60	steel strength (for a single anchor)	N/	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960
Grac	5 /	V _{sa}	(kN)	(23.5)	(42.7)	(66.2)	(93.9)	(128.1)	(168.7)	(213.5)	(271.2)
ASTM A706 Grade 60	Reduction for seismic shear	αv,seis					0.0	65			
ASTN	Resistance modification factor ϕ for tension ²	R					0.	80			
	Resistance modification factor ϕ for shear ²	R					0.	75			
	Nominal strength as governed by steel	Nsa	lb (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)				
ade 40	strength (for a single anchor)	V _{sa}	lb (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)		bars are furni	vith ASTM A6 shed only in s	
A615 Grade 40	Reduction factor for seismic shear	𝔅V,seis	-		0.	65			throug	h No. 6	
ASTM ,	Resistance modification factor for tension ³	R	-				0.	70			
*	Resistance modification factor for shear ³	R	-				0.	65			

¹Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3. ²The tabulated value of the material resistance factors ϕ_s and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to ductile steel elements

³The tabulated value of material resistance factors ϕ_e and ϕ_s , and resistance modsification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

	O week al	11				Nominal	Bar Size			
DESIGN INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
Effectiveness factor for cracked concrete	K _{c,cr}	in-lb (SI)					7 7)			
Effectiveness factor for uncracked concrete	k _{c,uncr}	inlb. (SI)					24 0)			
Min. anchor spacing	S _{min}	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 (76)	3 ³ / ₄ (95)	4 ¹ / ₄ (108)	4 ³ / ₄ (121)	5 ¹ / ₄ (133)	5 ⁷ / ₈ (149)
Min. edge spacing		in.	1 ⁵ /8	1 ³ /4	2 (51)	2 ³ / ₈ (60)	2 ¹ / ₂ (64)	2 ³ / ₄ (70)	3 (76)	3 ¹ / ₄ (82)
wini. euge spacing	C _{min}	(mm)	(41)	(44)	F		lge distances : luced minimur			Dr
Min. member thickness	h _{min}	in. (mm)		+ 1¹/₄ + 30)			h _{ef} +	2d ₀ ³		
Critical edge spacing – splitting (for uncracked concrete)	C _{ac}	-				2	h _{ef}			
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-				1.	00			
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-				1.	00			

¹Additional setting information is described in Figure 4, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5.3. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. ${}^{3}d_{0}$ = hole diameter.

TABLE 9-BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

							Nominal	Bar Siz	e		
DESIGN INFOR	RMATION	Symbol	Units	No.3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
Minimum embe	dment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	4 ¹ / ₂ (114)	5 (127)
Maximum embedment			in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	22 ¹ / ₂ (572)	25 (635)
Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	2,200 (15.2)	2,100 (14.5)	2,030 (14.0)	1,970 (13.6)	1,920 (13.2)	1,880 (13.0)	1,845 (12.7)	1,815 (12.5)
range A ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	1,090 (7.5)	1,055 (7.3)	1,130 (7.8)	1,170 (8.1)	1,175 (8.1)	1,155 (8.0)	1,140 (7.9)	1,165 (8.0)
Temperature range B ^{2,3} :	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	1,915 (13.2)	1,830 (12.6)	1,765 (12.2)	1,715 (11.8)	1,670 (11.5)	1,635 (11.3)	1,615 (11.1)	1,580 (10.9)
	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	945 (6.5)	915 (6.3)	980 (6.8)	1,015 (7.0)	1,020 (7.0)	1,005 (6.9)	995 (6.8)	1,010 (7.0)
Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	1,380 (9.5)	1,315 (9.1)	1,270 (8.8)	1,235 (8.5)	1,205 (8.3)	1,180 (8.1)	1,155 (8.0)	1,140 (7.8)
range C ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	680 (4.7)	660 (4.6)	705 (4.9)	735 (5.1)	735 (5.1)	725 (5.0)	715 (4.9)	730 (5.0)
Dry	Anchor category	-	-					1			
concrete	Permissible installation condition factor	Rd	-	1.00							
Water-	Anchor category	-	-	2							
saturated concrete	Permissible installation condition factor	R _{ws}	-	0.85							
Water-filled	Anchor category	-	-	3							
holes	Permissible installation condition factor	R _{wf}	-	0.75							
Reduction facto	r for seismic tension	⊂N,seis	-	0.9	95			1.	00		

Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength f'_c between 2,500 psi and

8,000 psi, tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.10}$. ²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

				Nominal Rod Diameter (mm)										
DESIG	GN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30				
Thread	ded rod O.D.	d	mm (in.)	10 (0.39)	12 (0.47)	16 (0.63)	20 (0.79)	24 (0.94)	27 (1.06)	30 (1.18)				
	ded rod effective cross- nal area	Ase	mm² (in.²)	58.0 (0.090)	84.3 (0.131)	157 (0.243)	245 (0.380)	353 (0.547)	459 (0.711)	561 (0.870)				
	Nominal strength as governed by steel strength	Nsa	kN (lb)	29.0 (6,518)	42.2 (9,473)	78.5 (17,643)	122.5 (27,532)	176.5 (39,668)	229.5 (51,580)	280.5 (63,043)				
Class 5.8	(for a single anchor)	Vsa	kN (lb)	17.4 (3,911)	25.3 (5,684)	47.1 (10,586)	73.5 (16,519)	105.9 (23,801)	137.7 (30,948)	168.3 (37,826)				
8-1 Cl	Reduction factor for seismic shear	α _{V,seis}	-				0.60							
SO 898-1	Resistance modification factor for tension ²	R	-				0.70							
_	Resistance modification factor for shear ²	R	-				0.65							
8	Nominal strength as governed by steel strength	Nsa	kN (lb)	46.4 (10,428)	67.4 (15,157)	125.6 (28,229)	196 (44,051)	282.4 (63,470)	367.2 (82,528)	448.8 (100,868)				
Class 8.6	(for a single anchor)	Vsa	kN (lb)	27.8 (6,257)	40.5 (9,094)	75.4 (16,937)	117.6 (26,431)	169.4 (38,082)	220.3 (49,517)	269.3 (60,521)				
8-1 Cl	Reduction factor for seismic shear	α _{V,seis}	-				0.60							
SO 898-1	Resistance modification factor for tension ²	R	-				0.70							
	Resistance modification factor for shear ²	R	-				0.65							
	Nominal strength as governed by steel strength	Nsa	kN (lb)	40.6 (9,125)	59 (13,263)	109.9 (24,700)	171.5 (38,545)	247.1 (55,536)	229.5 (51,580)	280.5 (63,043)				
-1, steel ³	(for a single anchor)	Vsa	kN (lb)	24.4 (5,475)	35.4 (7,958)	65.9 (14,820)	102.9 (23,127)	148.3 (33,322)	137.7 (30,948)	168.3 (37,826)				
ISO 3506-1, stainless steel ³	Reduction factor for seismic shear	α _{V,seis}	-				0.60							
ISC A4 sta	Resistance modification factor for tension ²	R	-				0.70							
	Resistance modification factor for shear ²	R	-				0.65							

TABLE 10-STEEL DESIGN INFORMATION FOR METRIC THREADED ROD¹

¹Values provided for common rod material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3. Nuts and washers must comply with requirements for the rod.

²The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements

³A4-70 Stainless steel (M8-M24); A4-50 Stainless steel (M27-M30)

TABLE 11—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

cracked concrete Effectiveness factor for uncracked concrete Min. anchor spacing Min. edge distance Min. member thickness Critical edge distance - splittir for uncracked concrete) ² Resistance modification facto or tension, concrete failure nodes, Condition B ²	a		Nominal Rod Diameter (mm)											
DESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30					
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)		7 (17)										
Effectiveness factor for uncracked concrete	k _{c,uncr}	SI (in-lb)				10 (24)								
Min. anchor spacing	S _{min}	mm (in.)	50 (2)	60 (2 ³ / ₈)	75 (3)	95 (3 ³ / ₄)	115 (4 ¹ / ₂)	125 (5)	140 (5 ¹ / ₂)					
Min odgo distance		mm	40	45	50 (2)	60 (2 ³ / ₈)	65 (2 ¹ / ₂)	75 (3)	80 (3 ¹ / ₈)					
Min. edge distance	C _{min}	(in.)	(1 ⁵ / ₈)	(1 ³ / ₄)	Fo		stances see Tab minimum edge o	$(3) \qquad (3^{1}/_{8})$ able 1 of this report for						
Min. member thickness	h _{min}	mm (in.)		+ 30 + 1 ¹ / ₄)			$h_{ef} + 2d_0^{3}$							
Critical edge distance - splitting (for uncracked concrete) ²	C _{ac}	-				2h _{ef}								
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-				1.00								
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-				1.00								

¹Additional setting information is described in Figure 4, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3 D.5.3. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. ³ d₀ = hole diameter.

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES
DRILLED WITH A HAMMER DRILL AND CARBIDE BIT ¹

	O week at	11-1-1-1-0	Nominal Rod Diameter (inch)							
DESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30	
edment	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)	
Maximum embedment			200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)	
Characteristic bond strength in uncracked concrete	Tk, uncr	N/mm² (psi)	17.7 (2,571)	16.9 (2,453)	15.6 (2,256)	14.6 (2,112)	13.9 (2,020)	13.7 (1,985)	13.7 (1,980)	
Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	7.2 (1,039)	7.2 (1,043)	7.7 (1,110)	8.4 (1,217)	8.3 (1,209)	8.3 (1,204)	7.9 (1,149)	
Characteristic bond strength in uncracked concrete	Tk, uncr	N/mm² (psi)	15.4 (2,237)	14.7 (2,134)	13.5 (1,963)	12.7 (1,837)	12.1 (1,757)	11.9 (1,727)	11.9 (1,723)	
Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	6.2 (904)	6.3 (908)	6.7 (966)	7.3 (1,058)	7.2 (1,052)	7.2 (1,047)	6.9 (999)	
Characteristic bond strength in uncracked concrete	Tk, uncr	N/mm² (psi)	11.1 (1,612)	10.6 (1,538)	9.8 (1,415)	9.1 (1,324)	8.7 (1,266)	8.6 (1,245)	8.6 (1,241)	
Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	4.5 (651)	4.5 (654)	4.8 (696)	5.3 (763)	5.2 (758)	5.2 (755)	5.0 (720)	
Anchor category	-	-				1				
Permissible installation condition factor	R _d	-	1.00							
Anchor category	-	-	2							
Permissible installation condition factor	R _{ws}	-		0.85						
Anchor category	-	-				3				
Permissible installation condition factor	R _{wf}	-	0.75							
or for seismic tension	∝N,seis	-				0.95				
	edment Characteristic bond strength in uncracked concrete Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete Anchor category Permissible installation condition factor Anchor category Permissible installation condition factor Anchor category Permissible installation condition factor	adment hef,min edment hef,min edment hef,max Characteristic bond strength in uncracked concrete $\pi_{c,uncr}$ Characteristic bond strength in cracked concrete $\pi_{c,uncr}$ Characteristic bond strength in uncracked concrete $\pi_{c,uncr}$ Characteristic bond strength in uncracked concrete $\pi_{c,uncr}$ Characteristic bond strength in cracked concrete $\pi_{c,uncr}$ Characteristic bond strength in uncracked concrete $\pi_{c,uncr}$ Anchor category - Permissible installation condition factor R_d Anchor category - Permissible installation condition factor R_{ws} Anchor category - Permissible installation condition factor R_{wf}	adment $h_{et,min}$ mm (in.)edment $h_{et,max}$ mm (in.)Characteristic bond strength in uncracked concrete $\pi_{k,uncr}$ N/mm^2 (psi)Characteristic bond strength in cracked concrete $\pi_{k,cr}$ N/mm^2 (psi)Characteristic bond strength in uncracked concrete $\pi_{k,uncr}$ N/mm^2 (psi)Characteristic bond strength in uncracked concrete $\pi_{k,uncr}$ N/mm^2 (psi)Characteristic bond strength in cracked concrete $\pi_{k,uncr}$ N/mm^2 (psi)Characteristic bond strength in uncracked concrete $\pi_{k,uncr}$ N/mm^2 (psi)Characteristic bond strength in uncracked concrete $\pi_{k,uncr}$ N/mm^2 (psi)Characteristic bond strength in uncracked concrete $\pi_{k,uncr}$ N/mm^2 (psi)Characteristic bond strength in cracked concrete $\pi_{k,uncr}$ N/mm^2 (psi)Anchor categoryPermissible installation condition factor R_{d} -Anchor categoryPermissible installation condition factor R_{ws} -Anchor categoryPermissible installation condition factor R_{wf} -Anchor categoryPermissible installation condition factor R_{wf} Anchor categoryPermissible installation condition factor R_{wf}	And the second secon	DESIGN INFORMATIONSymbolUnitsM10M12adment $h_{ef,min}$ mm (in.) 60 (2.4)(2.8)edment $h_{ef,max}$ mm (in.) 200 (2.57) 240 (9.4)Characteristic bond strength in uncracked concrete $\pi_{c,uncr}$ N/mm^2 (psi) 17.7 (2.571) 16.9 (2.453)Characteristic bond strength in cracked concrete $\pi_{c,cr}$ N/mm^2 (psi) 17.7 (2.571) 16.9 (2.453)Characteristic bond strength in uncracked concrete $\pi_{c,cr}$ N/mm^2 (psi) 15.4 (2.237) 14.7 (2.134)Characteristic bond strength in uncracked concrete $\pi_{c,cr}$ N/mm^2 (psi) 15.4 (1.612) 14.7 (2.134)Characteristic bond strength in cracked concrete $\pi_{c,cr}$ N/mm^2 (psi) 6.2 (904) 6.3 (908)Characteristic bond strength in uncracked concrete $\pi_{c,cr}$ N/mm^2 (psi) 11.1 (1.612) 10.6 (1.538)Characteristic bond strength in cracked concrete $\pi_{c,cr}$ N/mm^2 (psi) 4.5 (651) 4.5 (654)Anchor category $ -$ Permissible installation condition factor R_{ws} $ -$ Anchor category $ -$ Permissible installation condition factor R_{wf} $-$ Anchor category $ -$ Permissible installation condition factor R_{wf} $-$ Anchor category $ -$ Permissible	DESIGN INFORMATIONSymbolUnitsM10M12M16adment $h_{et,min}$ mm (in.) (2.4) (2.8) (3.1) edment $h_{et,max}$ mm (in.) (2.4) (2.8) (3.1) edment $h_{et,max}$ mm (in.) (2.4) (2.8) (3.1) Characteristic bond strength in uncracked concrete $\overline{v}_{k,uncr}$ N/mm^2 (psi) 17.7 (2,571) 16.9 (2,453) 15.6 (2,256)Characteristic bond strength in cracked concrete $\overline{v}_{k,uncr}$ N/mm^2 (psi) 7.2 (2,237) 7.7 (2,134) 7.1043 (1,043)Characteristic bond strength in uncracked concrete $\overline{v}_{k,uncr}$ N/mm^2 (psi) 15.4 (2,237) 14.7 (2,134) 13.5 (1,963)Characteristic bond strength in uncracked concrete $\overline{v}_{k,uncr}$ N/mm^2 (psi) 6.2 (904) 6.3 (966) 6.7 (966)Characteristic bond strength in uncracked concrete $\overline{v}_{k,uncr}$ N/mm^2 (psi) 11.1 (1,612) 10.6 (988) 9.8 (1,415)Characteristic bond strength in uncracked concrete $\overline{v}_{k,uncr}$ N/mm^2 (psi) 4.5 (651) 4.5 (654) 4.8 (696)Anchor category $ -$ Permissible installation condition factor R_{ws} $ -$ Permissible installation condition factor R_{wr} $ -$ Permissible installation condition factor R_{wr} $ -$ Permissible installati	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f_c / 2500)^{0.10}. See Section 4.1.4 of this report.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23 percent for temperature range C.

DEOL	OESIGN INFORMATION Reinforcing bar O.D. Reinforcing bar effective cross-sectional area Nominal strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor) Image: Strength as governed by steel strength (for a single anchor)			Nominal Bar Size										
DESIG	SN INFORMATION	Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Reinfo	prcing bar O.D.	d	mm (in.)	10 (0.394)	12 (0.472)	14 (0.551)	16 (0.630)	20 (0.787)	25 (0.984)	28 (1.102)	32 (1.260)			
		Ase	mm² (in.²)	78.5 (0.112)	113.1 (0.175)	153.9 (0.239)	201.1 (0.312)	314.2 (0.487)	490.9 (0.761)	615.8 (0.954)	804.2 (1.247)			
Reinforci sectional Sectional SG ar SG R 88 87 R 88 88 87 R 88 88 87 R 88 88 88 88 87 R 88 88 88 88 88 88 88 88 88 88 88 88 88		Nsa	kN (lb)	43.2 (9,739)	62.2 (14,024)	84.7 (19,088)	110.6 (24,932)	172.8 (38,956)	270.0 (60,868)	338.7 (76,353)	442.3 (99,727)			
	5 (Vsa	kN (lb)	25.9 (5,843)	37.3 (8,414)	50.8 (11,453)	66.4 (14,959)	103.7 (23,373)	162.0 (36,521)	203.2 (45,812)	265.4 (59,836)			
38 BSt		a _{V,seis}	-				0.	65						
DIN 48		R	-				0.	70						
	Resistance modification factor for shear ²	R	-				0.	65						

TABLE 13—STEEL DESIGN INFORMATION FOR METRIC REINFORCING BARS¹

¹Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3.

²The tabulated value of the material resistance factors ϕ_{c} and ϕ_{s} , and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14. Values correspond to brittle steel elements

TABLE 14—CONCRETE BREAKOUT DESIGN INFORMATION METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

	O www.hat	Unite			Nominal Bar Size									
DESIGN INFORMATION	Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32				
Effectiveness factor for cracked concrete	K _{c,cr}	SI (in-lb) 7 (17)												
Effectiveness factor for uncracked concrete	Kc,uncr	SI (in-lb)					10 (24)							
Min. anchor spacing	Smin	mm (in.)	50 (2)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	75 (3)	95 (3 ³ / ₄)	120 (4 ⁵ / ₈)	130 (5¹/₄)	150 (5 ⁷ / ₈)				
		mm	40	45	50 (2)	50 (2)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	75 (3)	85 (3 ¹ / ₈)				
Min. edge spacing	Cmin	(in.)	(1 ⁵ / ₈)	(13/4)	For smaller edge distances see Table 1 of this report for reduced minimum edge distances									
Min. member thickness	h _{min}	in. (mm)		$h_{ef} + 1^{1/4}$ ($h_{ef} + 30$)		(17) 10 (24) (24) $(23)/4)$ (3) $(33)/4)$ $(45)/8)$ $(51)/4)$ $(57)/4$ $(57)/4)$ $(57$								
Critical edge spacing – splitting (for uncracked concrete) ²	Cac	-					2h _{ef}							
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-					1.00							
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-					1.00							

¹Additional setting information is described in Figure 4, installation instructions. ²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5.3. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14.

 ${}^{3}d_{0}$ = hole diameter.

TABLE 15—BOND STRENGTH DESIGN INFORMATION METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

				Nominal Bar Size								
DESIGN INFORM	MATION	Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Minimum embedi	ment	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	75 (3.0)	80 (3.1)	90 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)	
Maximum embed	Iment	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	280 (11.0)	320 (12.6)	400 (15.7)	500 (19.7)	560 (22.0)	640 (25.2)	
Temperature	Characteristic bond strength in uncracked concrete		N/mm² (psi)	15.1 (2,183)	14.6 (2,121)	14.0 (2,025)	14.0 (2,025)	13.5 (1,954)	13.0 (1,886)	12.8 (1,852)	12.5 (1,813)	
range A ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	7.5 (1,082)	7.3 (1,060)	7.9 (1,144)	8.2 (1,193)	8.2 (1,188)	8.0 (1,158)	7.9 (1,144)	8.0 (1,163)	
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm² (psi)	13.1 (1,899)	12.7 (1,845)	12.1 (1,762)	12.1 (1,762)	11.7 (1,700)	11.3 (1,640)	11.1 (1,611)	10.9 (1,577)	
range B ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	6.5 (942)	6.4 (922)	6.9 (996)	7.2 (1,038)	7.1 (1,034)	6.9 (1,008)	6.9 (995)	7.0 (1,012)	
Temperature range C ^{2,3} :	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm² (psi)	9.4 (1,369)	9.2 (1,329)	8.8 (1,270)	8.8 (1,270)	8.4 (1,225)	8.2 (1,182)	8.0 (1,161)	7.8 (1,136)	
range C 2.	Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	4.7 (678)	4.6 (665)	4.9 (718)	5.2 (748)	5.1 (745)	5.0 (726)	4.9 (717)	5.0 (729)	
Dry	Anchor category	-	-				1					
concrete	Permissible installation condition factor	R _d	-		1.00							
Water-saturated	Anchor category	-	-	2								
concrete	Permissible installation condition factor	R _{ws}	-	0.85								
Water-filled	Anchor category	-	-	3								
holes	Permissible installation condition factor	R _{wf}	-		0.75							
Reduction factor	for seismic tension	∝N,seis	-	0.9	95			1.0	00			

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength f_c between 2,500 psi and 8,000 psi, tabulated characteristic bond strength may not be increased. See Section 4.1.4 of this report.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

3Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

⁴MAC cleaning is only permitted for installation in uncracked concrete up to an embedment depth of 10 times anchor diameter.

Conditions of listing:

- 1. The listing report addresses only conformance with the standards and code sections noted above.
- 2. Approval of the product's use is the sole responsibility of the local code official.
- 3. The listing report applies only to the materials tested and as submitted for review by ICC-ES.
- 4. Anchor sizes, dimensions, minimum embedment depths and other installation parameters are as set forth in this listing report.
- 5. Anchors must be limited to use in cracked and uncracked normal-weight concrete and lightweight concrete having a specified compressive strength, *f*_c, of 2,500 psi (17.2 MPa) to 8,500 psi (58.6 MPa).
- 6. The values of *f*'_c, used for calculation purposes must not exceed 55 MPa.
- 7. Limit states design values must be established in accordance with this listing report.
- 8. The use of fatigue or shock loading for these anchors under such conditions is beyond the scope of this listing report.
- 9. Anchors may be used to resist short-term loading due to wind or seismic forces in locations designed according to NBCC 2015.
- 10. Where not otherwise prohibited in the code as referenced in CSA A23.3-14, Würth WIT-UH 300 adhesive anchor system are permitted for use with fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:
 - a. Anchors are used to resist wind or seismic forces only.
 - b. Anchors that support a fire-resistance-rated envelope or a fire- resistance-rated membrane are protected by approved fire-resistance- rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - c. Anchors are used to support nonstructural elements.
- 11. Use of zinc-coated carbon steel anchors is limited to dry, interior locations.
- 12. Use of anchors made of stainless steel as specified in this report are permitted for exterior exposure and damp environments.
- 13. Steel anchoring materials in contact with preservative-treated wood and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- 14. Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program, and the certification shall include written and performance tests in accordance with the ACI/CRSI Adhesive Anchor Installer Certification program, or equivalent in accordance with CSA A23.3-14 D.10.2.3. The installation shall be continuously inspected during installation by an inspector specially approved for that purpose. The special inspector shall furnish a report to the licensed design professional and building official that the work covered by the report has been performed and that the materials used and the installation procedures used conform with the approved contract documents and the MPII in accordance with CSA A23.3-14 D.10.2.4.