

ICC-ES Listing Report

ELC-3814

Reissued May 2024

This listing is subject to renewal May 2025.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

CSI: DIVISION: 03 00 00—CONCRETE

Section: 03 16 00-Concrete Anchors

DIVISION: 05 00 00-METALS

Section: 05 05 19—Post-Installed Concrete Anchors

Product Certification System:

The ICC-ES product-certification system includes evaluating reports of tests of standard manufactured product, prepared by accredited testing laboratories and provided by the listee, to verify compliance with applicable codes and standards. The system also involves factory inspections, and assessment and surveillance of the listee's quality system.

Product: Hilti HIT-RE 500 V3 Adhesive Anchor System in Cracked and Uncracked Concrete.

HILTI, INC. Listee:

Compliance with the following standards:

Annex D, Anchorage of CSA A23.3-14, Design of Concrete Structures, CSA Group.

Compliance with the following codes:

Hilti HIT-RE 500 V3 adhesive anchor system in cracked and uncracked concrete, as described in this listing report, are in conformance with CSA A23.3-14, Annex D, as referenced in the applicable section of the following code editions:

■ National Building Code of Canada® 2015 and 2010 Applicable Section: Division B, Part 4, Section 4.3.3.

Description of adhesive anchor system:

The Hilti HIT-RE 500 V3 Adhesive is an injectable two-component epoxy adhesive. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-RE 500 V3 is available in 11.1-ounce (330 mL), 16.9-ounce (500 mL), and 47.3-ounce (1400 mL) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened foil pack stored in a dry, dark environment and in accordance with Figure 2.

Hole Cleaning Equipment:

Standard hole cleaning equipment, comprised of steel wire brushes and air nozzles, is described in Figure 2 of this listing report

The Hilti Safe-Set™ with Hilti HIT-RE 500 V3 consists of one of the following:

- For the anchor elements, threaded steel rods, steel reinforcing bars for use as anchors and Hilti HIS-N and HIS-RS inserts, the Hilti TE-CD or TE-YD hollow carbide drill bit with a carbide drilling head conforming to ANSI B212.15 must be used. Used in conjunction with a Hilti vacuum with a minimum value for the maximum volumetric flow rate of 129 CFM (61 ℓ/s), the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole.
- For the anchor elements, threaded steel rods, steel reinforcing bars for use as anchors and Hilti HIS-N and HIS-RS inserts, the Hilti Safe-Set™ with TE-YRT roughening tool with a carbide roughening head is used for hole preparation in conjunction with holes core drilled with a diamond core bit as illustrated in Figure 4.

Hilti HIT-RE 500 V3 must be dispensed with manual or electric dispensers provided by Hilti.

ANCHORING ELEMENTS

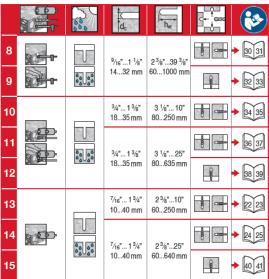
HILTI TE-YRT ROUGHENING TOOL

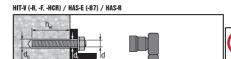
FIGURE 1—HILTI HIT-RE 500 V3 ANCHORING SYSTEM

Identification:

- 1. The Hilti HIT-RE 500 V3 anchors are identified by packaging labeled with the manufacturer's name (Hilti, Inc.) and address, product name, lot number, expiration date, and listing number (ELC-3814), and the ICC-ES listing mark. Threaded rods, nuts, washers, cap screws, and deformed reinforcing bars are standard elements and must conform to applicable national or specifications as set forth in Tables 3-6 of this listing report or equivalent.
- 2. The report holder's contact information is the following:

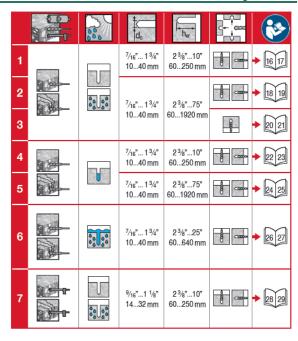
HILTI, INC.
7250 DALLAS PARKWAY, SUITE 1000
PLANO, TEXAS 75024
(800) 879-8000
www.us.hilti.com
HiltiTechEng@us.hilti.com

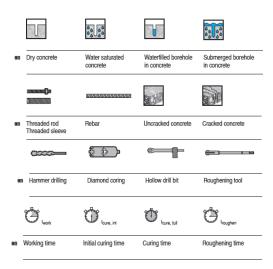

Installation:

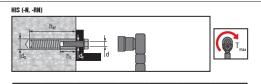

1. The installation parameters are illustrated in Figure 3. Installation must be in accordance with CSA A23.3-14 D.10 and D.10.2, as applicable. Anchor locations must comply with this listing report and the plans and specifications approved by the code official. Installation of the Hilti HIT-RE 500 V3 Adhesive Anchor Systems must conform to the manufacturer's printed installation instructions (MPII) included in each unit package as provided in Figure 2 of this report. The MPII contains additional requirements for combinations of drill hole depth, diameter, drill bit type, and dispensing tools.

Hilti HIT-RE 500 V3 adhesive anchors may be used to resist tension and shear forces in floor, wall, and overhead installations only if installation is into concrete with a temperature between $23^{\circ}F$ and $104^{\circ}F$ (-5°C and $40^{\circ}C$) for threaded rods, rebar, and Hilti HIS-(R)N inserts. Overhead installations for hole diameters larger than $^{7}/_{16}$ -inch or 10mm require the use of piston plugs (HIT-SZ, -IP) during injection to the back of the hole. $^{7}/_{16}$ -inch or 10mm diameter holes may be injected directly to the back of the hole with the use of extension tubing on the end of the nozzle. The anchor must be supported until fully cured (i.e., with Hilti HIT-OHW wedges, or other suitable means). Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance. Installations in concrete temperatures below $41^{\circ}F$ (5°C) require the adhesive to be conditioned to a minimum temperature of $41^{\circ}F$ (5°C).

Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program in accordance with CSA A23.3-14 D.10.2.2 or D.10.2.3, as applicable.

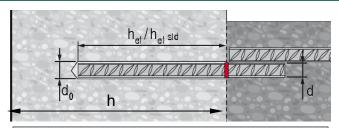

HAS / HIT-V


	Ø d₀	h _{ef}	Ø d _f	T _{max}	T _{max}
Ø d [inch]	[inch]	[inch]	[inch]	[ft-lb]	[Nm]
3/8	7/16	23/871/2	7/16	15	20
1/2	9/16	23/410	9/16	30	41
5/8	3/4	3 1/8 12 1/2	11/16	60	81
3/4	7/8	3 1/2 15	13/16	100	136
7/8	1	31/2 171/2	15/16	125	169
1	1 1/8	420	11/8	150	203
1 1/4	13/8	525	13/8	200	271


ı	ı	'n	•	١	,	
п	ı	L	۰	1		

	Ø d₀		Ø d _f	T _{max}
Ø d [mm]	[mm]	[mm]	[mm]	[Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	100480	26	200
M27	30	110540	30	270
M30	35	120600	33	300

1 inch = 25,4 mr



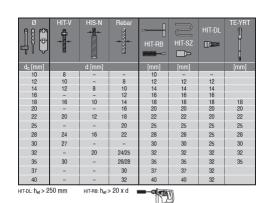
Ø d [inch]	Ø d₀ [inch]	h _{er} [inch]	Ø d _f [inch]	hs [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	11/16	43/8	7/16	3/8 ¹⁵ /16	15	20
1/2	7/8	5	9/16	1/21 3/16	30	41
5/8	1 1/8	63/4	11/16	5/81 1/2	60	81
3/4	1 1/4	81/8	13/16	3/417/8	100	136

Ø d [mm]	Ø d₀ [mm]	h _{er} [mm]	Ø d _f [mm]	hs [mm]	T _{max} [Nm]
M8	14	90	9	820	10
M10	18	110	12	1025	20
M12	22	125	14	1230	40
M16	28	170	18	1640	80
M20	32	205	22	2050	150

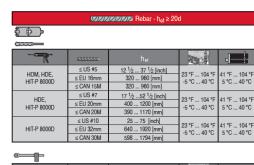
	U\$ REBAR				
	Ød₀	h _{ef} std	h _{ef}		
d	[inch]	[inch]	[inch]		
#3	1/2	33/8	23/871/2		
#4	5/8	4 1/2	23/410		
#5	3/4	5 ⁵ %	31/8121/2		
#6	7/8	63/4	31/215		
#7	1	7 1/8	31/2171/2		
#8	1 1/8	9	420		
#9	1 3/8	101/8	41/2221/2		
#10	1 1/2	11 1/4	525		

	CANADIAN REBAR				
d daggaga	Ø d₀ [inch]	h _{ef std} [mm]	h _{ef} [mm]		
10 M	9/16	115	70226		
15 M	3/4	145	80320		
20 M	1	200	90390		
25 M	1 1/4	230	101504		
30 M	1 1/2	260	120598		

	HAS	HIS-N	Rebar	HIT-RB	HIT-SZ	HIT-DL	TE-YRT
d₀ [inch]		d [inch]		[inch]	[inch]	[inch]	[inch]
7/16	36	-	-	7/16	-	-	
1/2	-	-	#3	1/2	1/2	1/2	
9/16	1/2	-	10M	9/16	9/16	9/16	
5/6 11/16	-	3/6	#4	5/8 11/16	5/8 11/16	9/16 11/16	
34	- 56	78	15M #5	3/4	3/4	3/4	3/4
7/6	34	1/2	#6	7/8	7/8	7/6	7/8
1	7/6	-	20M #6 #7	1	1	1	1
11/6	1	56	#7 #8	1 1/6	1 1/6	1	1 1/6
11/4	-	3/4	25M #8	1 1/4	11/4	1	
136	11/4	-	#9	13/6	136	136	136
1 1/2	-	-	30M #10	1 1/2	1 1/2	1 36	
134	-	-	#11	134	134	136	
HIT-DL: h _{ef} > 10	тгоц: h _{ef} > 10" нгт-яв: h _{ef} > 20 х d						


	HIT-RE-M Art. No.		HIT-OHW Art. No.
Hitti VC	337111	HDM 330 HDM 500 HDE 500-A18	387550

0	h _e	R	***************************************
d₀ [inch]	[inch]	Art. No. 381215	
7/10"1 1/6"	2 %" 52 1/4"	V	≥ 6 bar/90 psi @ 6 m³/h
1 1/4"1 1/2"	4"75"	-	≥140 m³/h/≥82 CFM


	100			TOTOTOTOTO	
	[°F]	[°C]	t _{work}	toure, ini	tore, tut
BUS	23	-5	2 h	48 h	168 h
	32	0	2 h	24 h	36 h
	40	4	2 h	16 h	24 h
	50	10	1.5 h	12 h	16 h
	60	16	1 h	8 h	16 h
	72	22	25 min	4 h	6.5 h
	85	29	15 min	2.5 h	5 h
	95	35	12 min	2 h	4.5 h
	105	41	10 min	2 h	4 h
	≥ +5 °C / 4	I1 °F		102 E	= 2x t _{our}

	1	
h _e [inch]	h _{er} [mm]	troughen
0 4	0 100	10 sec
4.018	101 200	20 sec
8.0112	201 300	30 sec
12.01 16	301 400	40 sec
16.01 20	401 500	50 sec
troughen = het [inch] * 2.5	t _{routhen} = h _{ef} [mm] / 10	

EUROPEAN REBAR					
<i>ष्ट्राच्याच्याच्या</i> Ø d [mm]	Ød₀[mm]	h _{ef std} [mm]	h _{ef} [mm]		
10	14	90	60200		
12	16	110	70240		
14	18	125	75280		
16	20	125	80320		
20	25	170	90400		
25	32	210	100500		
28	35	270	112560		
32	40	300	128640		

	HIT-RE-M Art. No.		HIT-OHW Art. No.
Hitti VC	337111	HDM 330 / 500 HDE 500-A18	387550
0 0			200
	h _{ef}	10	0
d₀ [mm]	h _{er}	Art. No. 381215	0
€	[mm] 601500	Art. No. 381215	≥ 6 bar/90 psi

	שעעעעעע		30	-
UDM UDE	≤ US #5	12 ½ 37 ½ [inch]	00.05 404.05	41 °F 104 °F
HDM, HDE, HIT-P 8000D	≤ EU 16mm	320 960 [mm]	-5 °C 40 °C	
1111 00000	≤ CAN 15M	320 960 [mm]	5 0 40 0	5 0 40 0
UDE	≤ US #7	17 ½ 39 % [inch]	00.05 404.05	44.05 404.05
HDE, HIT-P 8000D	≤ EU 20mm	400 1000 [mm]	23 °F 104 °F -5 °C 40 °C	
1111 00000	≤ CAN 20M	390 1000 [mm]	3 0 40 0	3 0 40 0

FIGURE 2—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

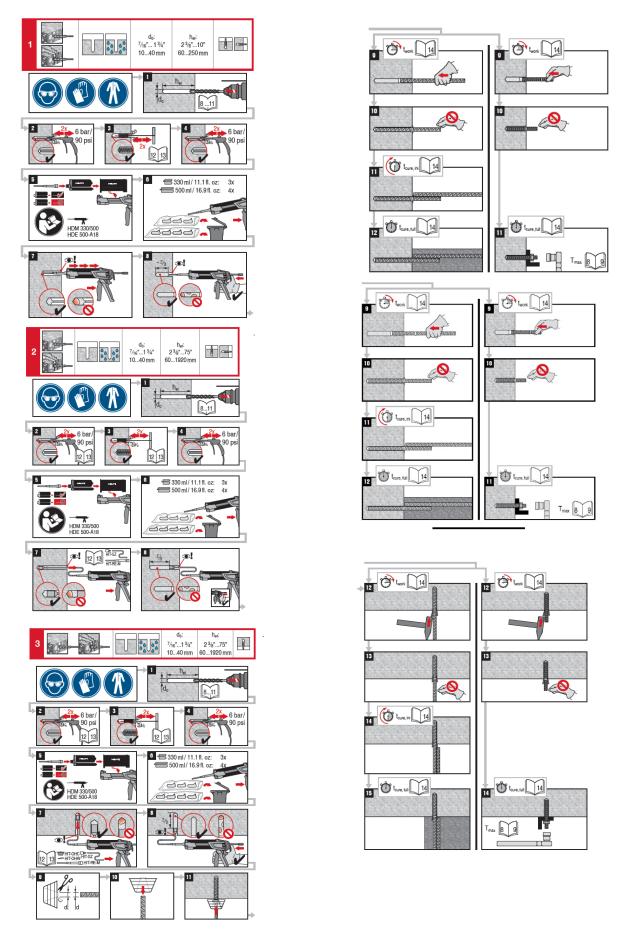


FIGURE 2—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

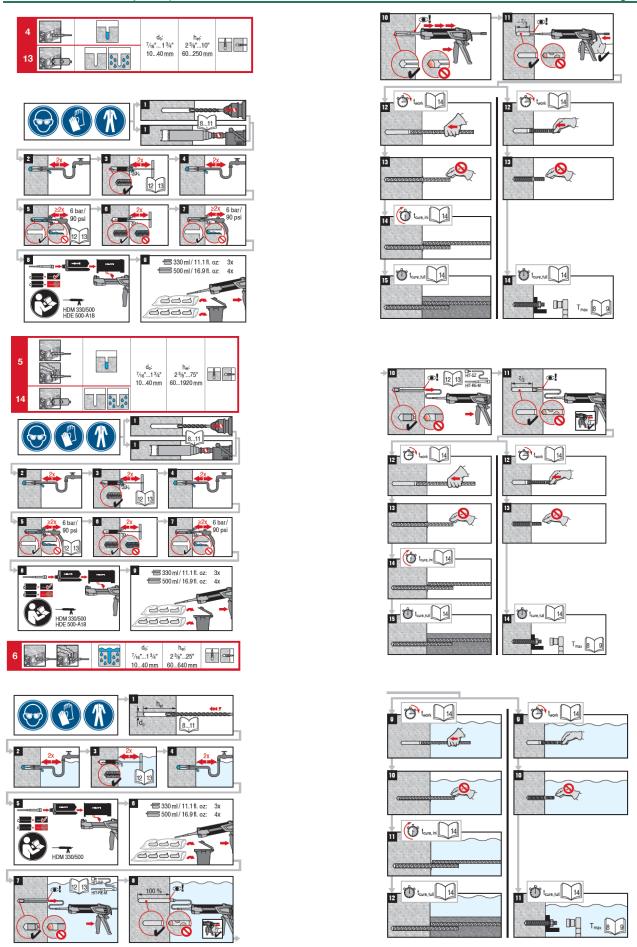
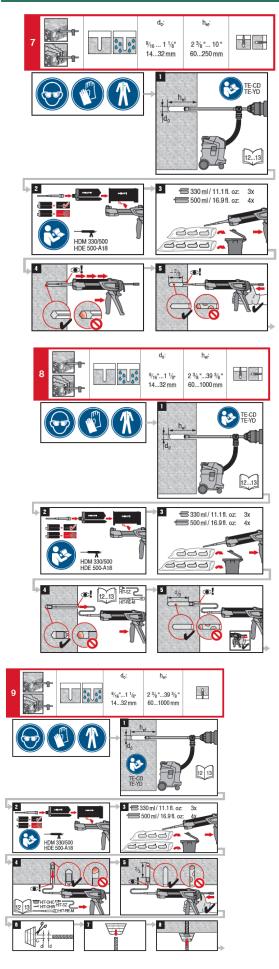
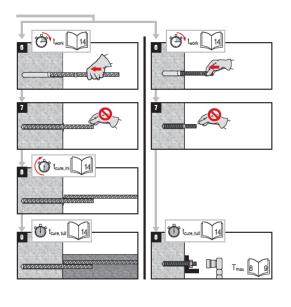
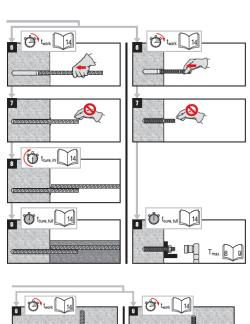
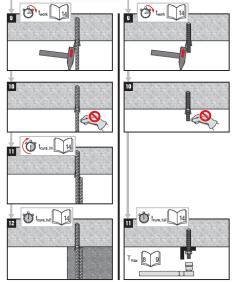






FIGURE 2—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

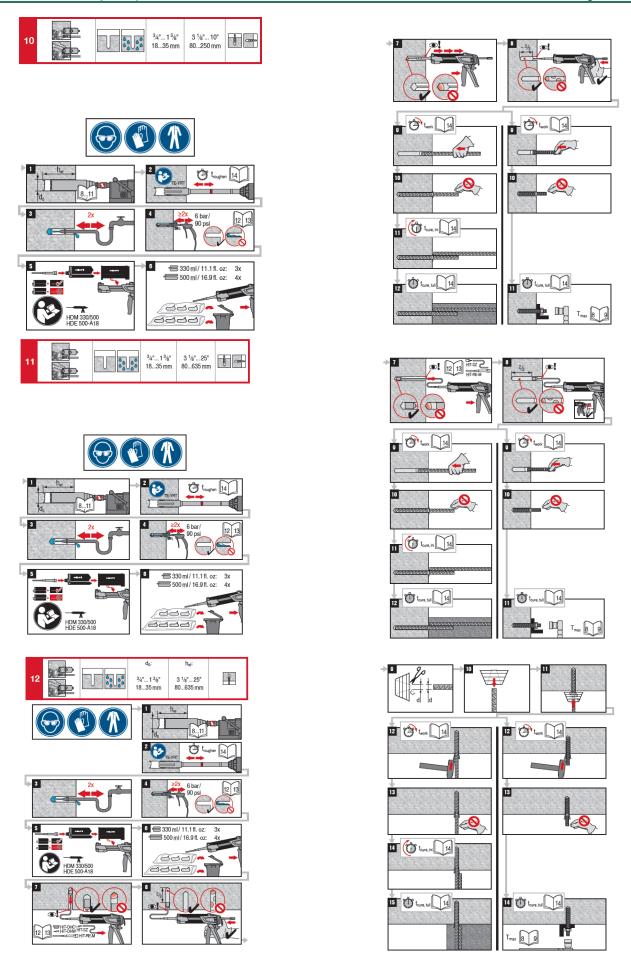


FIGURE 2—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

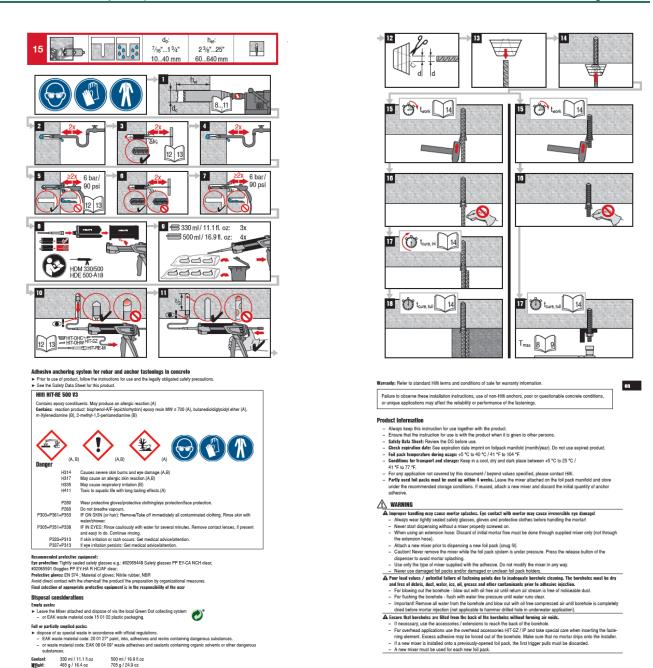


FIGURE 2—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (Continued)

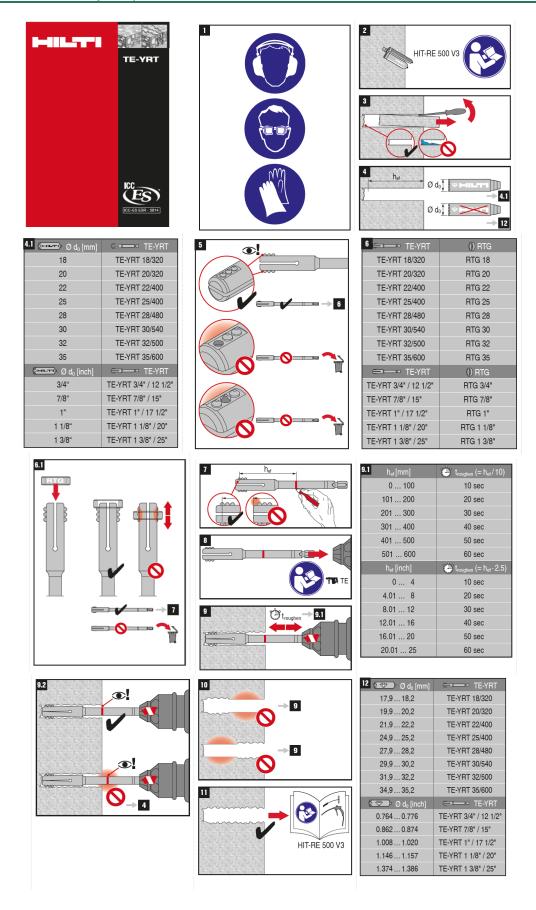
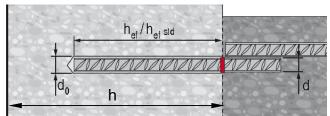
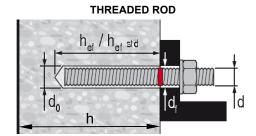



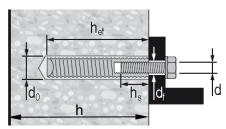
FIGURE 2—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII)

Anchor setting information:


DEFORMED REINFORCMENT

US REBAR					
ממממממ	Ød₀	h _{ef} std	h _{ef}		
d	[inch]	[inch]	[inch]		
#3	1/2	33/8	23/871/2		
#4	5/8	4 1/2	23/410		
#5	3/4	5 ⁵ / ₈	31/8121/2		
#6	7/8	63/4	31/215		
#7	1	7 7/8	31/2171/2		
#8	1 1/8	9	420		
#9	1 3/8	101/8	41/2221/2		
# 10	1 1/2	111/4	525		

CANADIAN REBAR					
ממממממט	Ød₀	h _{ef} std	h _{ef}		
d	[inch]	[mm]	[mm]		
10 M	9/16	115	70226		
15 M	3/4	145	80320		
20 M	1	200	90390		
25 M	1 1/4	230	101504		
30 M	1 1/2	260	120598		


	EUROPEAN REBAR						
<i>иппапапа</i> Ø d [mm]	Ød₀[mm]	h _{ef} std [mm]	h _{ef} [mm]				
10	14	90	60200				
12	16	110	70240				
14	18	125	75280				
16	20	125	80320				
20	25	170	90400				
25	32	210	100500				
28	35	270	112560				
32	40	300	128640				

FRACTIONAL THREADED ROD						
Ø d [inch]	Ød₀ [inch]	h _{ef} std [inch]	h _{ef} [inch]	T _{mex} [ft-lb]	T _{max} [Nm]	
3/8	7/16	33/8	23/8 71/2	15	20	
1/2	9/16	41/2	23/410	30	41	
5/8	3/4	55/8	31/8121/2	60	81	
3/4	7/8	63/4	31/215	100	136	
7/8	1	7 7/8	31/2171/2	125	169	
1	1 1/8	9	420	150	203	
1 1/4	1 3/8	111/4	525	200	271	

METRIC THREADED ROD						
Ø d [mm]	Ød₀[mm]	h _{ei std} [mm]	h _{ef} [mm]	T _{max} [Nm]		
M10	12	90	60200	20		
M12	14	110	70240	40		
M16	18	125	80320	80		
M20	22	170	90400	150		
M24	28	210	96480	200		
M27	30	240	108540	270		
M30	35	270	120600	300		

HILTI HIS-N AND HIS-RN THREADED INSERTS

FRACTIONAL HILTI HIS-N AND HIS-RN THREADED INSERTS						
Ø d [inch]	Ød₀ [inch]	h _{ef} [inch]	Ø d _f [inch]	h _s [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	11/16	4 3/8	7/16	3/815/16	15	20
1/2	7/8	5	9/16	1/21 3/16	30	41
5/8	1 1/8	63/4	11/16	5/811/2	60	81
3/4	1 1/4	81/8	13/16	3/41 7/8	100	136

METRIC HILTI HIS-N AND HIS-RN THREADED INSERTS						
Ø d [mm]	Ød₀[mm]	h _{ef} [mm]	Ød _i [mm]	h _s [mm]	T _{max} [Nm]	
M8	14	90	9	820	10	
M10	18	110	12	1025	20	
M12	22	125	14	1230	40	
M16	28	170	18	1640	80	
M20	32	205	22	2050	150	

TABLE 1—INSTALLATION TORQUE SUBJECT TO EDGE DISTANCE

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for edge distances less than the values given in Tables 8, 16, and 28 as applicable. For edge distances c_{ai} and anchor spacing s_{ai} , the maximum torque T_{max} shall comply with the following requirements:

REDUCED MAXIMUM INSTALLATION TORQUE $T_{max,red}$ FOR EDGE DISTANCES $c_{ai} < (5 \times d_a)$				
EDGE DISTANCE, c_{ai} MINIMUM ANCHOR MAXIMUM TORQU SPACING, s_{ai} $T_{max,red}$				
	5 d . d	0.0 · · · T		
1.75 in. (45 mm) ≤ c_{ai}	5 x d_a ≤ s_{ai} < 16 in.	0.3 x <i>T_{max}</i>		

Ultimate Limit States Design:

Design resistance of anchors for compliance with the 2015 NBCC must be determined in accordance with CSA A23.3-14 Annex D, and this listing report.

Design table index is provided in Table 2 and design parameters are provided in Tables 3 through 31 of this listing report are based on the 2015 NBCC (CSA A23.3-14). The limit states design of anchors must comply with CSA A23.3-14 D.5.1, except as required in CSA A23.3-14 D.4.3.1.

Material resistance factors must be ϕ_c = 0.65 and ϕ_s = 0.85 in accordance with CSA A23.3-14 Sections 8.4.2 and 8.4.3, and resistance modification factor, R, as given in CSA A23.3-14 Section D.5.3, and noted in Tables 7 through 31 of this listing report, must be used for load combinations calculated in accordance with Division B, Part 4, Section 4.1.3 of the 2015 NBCC, or Annex C of CSA A23.3-14. The nominal strength, N_{sa} or V_{sa} , in Tables 7A, 7B, 9, 15, 23, and 27 of this listing report must be multiplied by ϕ_s and R to determine the factored resistance, N_{sar} or V_{sar} . The nominal strength, N_{cbgr} , N_{cbgr} , N_{cbgr} , and N_{cbgr} , in Tables 8, 16, 24, and 28 of this listing report must be multiplied by ϕ_s and N_{cbgr} , N_{cbgr} , and N_{cbgr} , and N_{cbgr} , and N_{cbgr} , N_{cbgr} , and N_{cbgr} , and N_{cbgr} , N_{cbgr} , N_{cbgr} , N_{cbgr} , N_{cbgr} , and N_{cbgr} , and N_{cbgr} , N_{cbgr} , and N_{cbgr} , and N_{cbgr} , N_{cbgr

The factored bond resistance, N_{bar} , must be multiplied by ϕ_c and the permissible installation condition factors for dry concrete, R_d , water-saturated concrete, R_{ws} , water-filled holes, R_{wf} , and submerged concrete, R_{uw} , for the corresponding installation conditions as given in Tables 9 through 14, 17 through 22, 25 through 26B, and 29 through 31.

For anchors to be installed in seismic regions described in NBCC 2015: The factored resistance shear strength, V_{sar} , must be adjusted by $\alpha_{V,seis}$ as given in Tables 7, 15, 23, and 27 for the corresponding anchor steel. The nominal bond strength $\tau_{k,cr}$ must be adjusted by $\alpha_{N,seis}$ as given in Tables 9, 10, 12, 13, 17, 18, 20, 21, 25, 26A, 29, and 30.

TABLE 2—DESIGN TABLE INDEX

Pasiwa 3	rahia.		Fractiona	ı	Metric			
Design 1	able	Table)	Page	Table)	Page	
Standard Threaded Rod	Steel Strength - N_{sa} , V_{sa}	7A		16	15		23	
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg} , V_{cpg}	8		18	16		24	
	Bond Strength - Na, Nag	12-14	ı	21-22	20-22	2	28-29	
Hilti HIS-N and HIS-RN Internally Threaded Insert	Steel Strength - N _{sa} , V _{sa}	27		33	33 27		33	
ARRENGEREKERKERREGERAGEREKERKERREGER	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg} , V_{cpg}	28		34	28		34	
	Bond Strength - Na, Nag	29-31	1 35-36		29-31		35-36	
Decise 7	Tabla	Fractional E		EU N	EU Metric		Canadian	
Design 1	abie	Table	Page	Table	Page	Table	Page	
Steel Reinforcing Bars	Steel Strength - N_{sa} , V_{sa}	7B	17	15	23	23	30	
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cp} , V_{cpg}	8	18	16	24	24	30	
	Bond Strength - Na, Nag	9-11	19-20	17-19	25-27	25-26B	31-32	

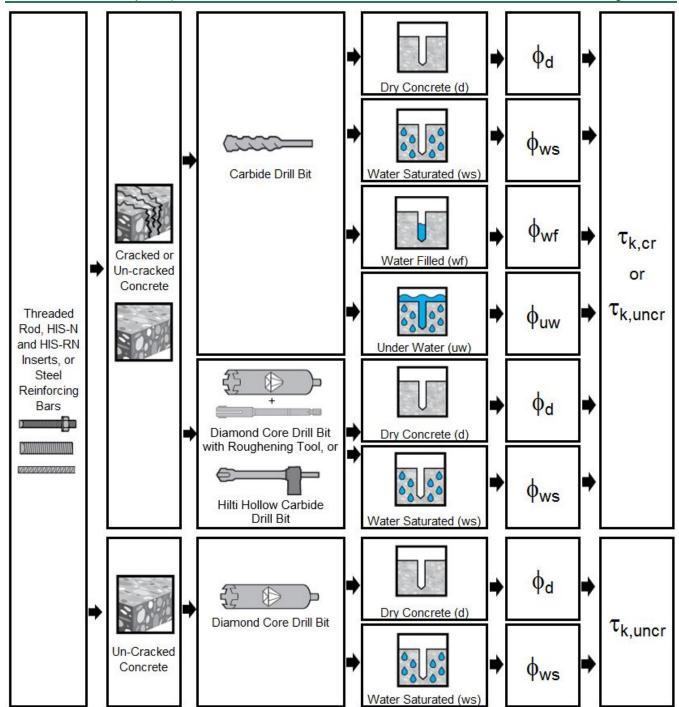


FIGURE 4—FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

THR	EADED ROD SPECIFICATIO	N D	Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, f_{ya}	f _{uta} /f _{ya}	Elongation, min. percent ⁷	Reduction of Area, min. percent	Specification for nuts ⁸
	ASTM A193 ² Grade B7 ≤ 2 ¹ / ₂ in. (≤ 64 mm)	MPa	862	724	1.19	16	50	ASTM A563 Grade DH
	ASTM F568M ³ Class 5.8 M5 (¹ / ₄ in.) to M24 (1 in.) (equivalent to ISO 898-1)	MPa	500	400	1.25	10	35	ASTM A563 Grade DH ⁹ DIN 934 (8-A2K)
STEEL	ASTM F1554, Grade 36 ⁷	MPa	400	248	1.61	23	40	ASTM A194 or ASTM A563
CARBON	ASTM F1554, Grade 55 ⁷	, Grade 55 ⁷ MPa 517		379	1.36	21	30	ASTM A194 or ASTM A563
S	ASTM F1554, Grade 105 ⁷	MPa	862	724	1.19	15	45	ASTM A194 or ASTM A563
	ISO 898-1 ⁴ Class 5.8	MPa	500	400	1.25	22	-	DIN 934 Grade 6
	ISO 898-1 ⁴ Class 8.8	MPa	800	640	1.25	12	52	DIN 934 Grade 8
	ASTM F593 ⁵ CW1 (316) ¹ / ₄ -in. to ⁵ / ₈ -in.	MPa	689	448	1.54	20	-	ASTM F594
STEEL	ASTM F593 ⁵ CW2 (316) ³ / ₄ -in. to 1 ¹ / ₂ -in.	MPa	586	310	1.89	25	-	ASTM F594
	ASTM A193 Grade 8(M), Class 1² - 1 ¼-in.	MPa	517	207	2.50	30	50	ASTM F594
STAINLESS	ISO 3506-1 ⁶ A4-70 M8 – M24	MPa	700	450	1.56	40	-	ISO 4032
	ISO 3506-1 ⁶ A4-50 M27 – M30		500	210	2.38	40	-	ISO 4032

¹ Hilti HIT-RE 500 V3 adhesive may be used in conjunction with all grades of continuously threaded carbon or stainless steel rod (all-thread) that comply with the code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

TABLE 4—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING BAR SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength, f_{ya}
ASTM A615 ¹ Gr. 60	MPa	620	414
ASTM A615 ¹ Gr. 40	MPa	414	276
ASTM A706 ² Gr. 60	MPa	550	414
DIN 488 ³ BSt 500	MPa	550	500
CAN/CSA-G30.18 ⁴ Gr. 400	MPa	540	400

¹ Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

² Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

³ Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners

⁴ Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs

⁵ Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

⁶ Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs

⁷ Based on 2-in. (50 mm) gauge length except for A193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

⁸ Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

⁹ Nuts for fractional rods.

² Standard Specification for Low Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

³ Reinforcing steel; reinforcing steel bars; dimensions and masses

⁴ Billet-Steel Bars for Concrete Reinforcement

TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF FRACTIONAL AND METRIC HIS-N AND HIS-RN INSERTS

HILTI HIS-N AND HIS-RN INSERTS		Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, f_{ya}
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN 1561 9SMnPb28K	MPa	490	390
Stainless Steel EN 10088-3 X5CrNiMo 17-12-2	MPa	700	350

TABLE 6—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH HIS-N AND HIS-RN INSERTS^{1,2}

BOLT, CAP SCREW OR STUD SPECIFICATION		Minimum specified ultimate strength f _{uta}	Minimum specified yield strength 0.2 percent offset f_{ya}	f _{uta} /f _{ya}	Elongation, min.	Reduction of Area, min.	Specification for nuts ⁶
ASTM A193 Grade B7	MPa	862	724	1.119	16	50	ASTM A563 Grade DH
SAE J429³ Grade 5	MPa	828	634	1.30	14	35	SAE J995
ASTM A325 ⁴ ¹ / ₂ to 1-in.	MPa	828	634	1.30	14	35	A563 C, C3, D, DH, DH3 Heavy Hex
ASTM A193 ⁵ Grade B8M (AISI 316) for use with HIS-RN	MPa	759	655	1.16	15	45	ASTM F594 ⁷ Alloy Group 1, 2 or 3
ASTM A193 ⁵ Grade B8T (AISI 321) for use with HIS-RN	MPa	862	690	1.25	12	35	ASTM F594 ⁷ Alloy Group 1, 2 or 3

¹ Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel HIS inserts.

² Only stainless steel bolts, cap screws or studs must be used with HIS-RN inserts.

³ Mechanical and Material Requirements for Externally Threaded Fasteners

⁴ Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

⁵ Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

⁶ Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud.

⁷ Nuts for stainless steel studs must be of the same alloy group as the specified bolt, cap screw, or stud.

Fractional Threaded Rod

Steel Strength

TABLE 7A—STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

DE01011 II	UFORMATION.	0	11.24.			Nomi	nal rod diame	eter (in.)1		
DESIGN IN	NFORMATION	Symbol	Units	3/8	1/2	5/8	3/4	⁷ / ₈	1	1 ¹ / ₄
Rod O.D.		d	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Rod O.D.		a	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
Pod offocti	ive cross-sectional area	Ase	in. ²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691
Rod ellecti	ve cross-sectional area	Ase	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)
	Nominal strength as governed by steel	N _{sa}	kN	25.0	45.8	72.9	107.9	148.9	195.3	312.5
5.8	strength	V _{sa}	kN	15.0	27.5	43.7	64.7	89.3	117.2	187.5
ISO 898-1 Class 5.8	Reduction for seismic shear	αv,seis	-				1.0			
<u> </u>	Resistance modification factor for tension ³	R	1				0.70			
	Resistance modification factor for shear ³	R	ı				0.65			
B7	Nominal strength as governed by steel	Nsa	kN	43.1	78.9	125.7	186.0	256.7	336.8	538.8
193 F	strength	V _{sa}	kN	25.9	47.3	75.4	111.6	154.0	202.1	323.3
N A	Reduction for seismic shear	αv,seis	-				1.0			
ASTM A193 B7	Resistance modification factor for tension ² R - 0.80 Resistance modification factor for shear ² R - 0.75									
1	Resistance modification factor for shear ²	R	•				0.75			
_	Nominal strength as governed by steel	N _{sa}	kN	-	36.6	58.3	86.3	119.1	156.3	250.0
1554	strength	V _{sa}	kN	-	22.0	35.0	51.8	71.5	93.8	150.0
ASTM F1554 Gr. 36	Reduction factor, seismic shear	αv,seis	-				0.60			
AST	Resistance modification factor for tension ²	R	-				0.80			
	Resistance modification factor for shear ²	R	•				0.75			
-	Nominal strength as governed by steel	N _{sa}	kN	-	47.4	75.4	111.6	154.0	202.1	323.3
ASTM F1554 Gr. 55	strength	V _{sa}	kN	-	28.4	45.2	67.0	92.4	121.3	194.0
TM F16 Gr. 55	Reduction factor, seismic shear	αν,seis	-				1.0			
AST	Resistance modification factor for tension ²	R	-				0.80			
-	Resistance modification factor for shear ²	R	-				0.75			
	Nominal strength as governed by steel	N _{sa}	kN	-	78.9	125.7	186.0	256.7	336.8	538.8
ASTM F1554 Gr. 105	strength	V _{sa}	kN	-	47.3	75.4	111.6	154.0	202.1	323.3
TM F155 Gr. 105	Reduction factor, seismic shear	αν,seis	-				1.0			
AST	Resistance modification factor for tension ²	R	-				0.80			
	Resistance modification factor for shear ²	R	-				0.75			
>	Nominal strength as governed by steel	N _{sa}	kN	34.5	63.1	100.5	126.5	174.6	229.0	-
F593, CW ainless	strength	V _{sa}	kN	20.7	37.9	60.3	75.9	104.7	137.4	-
1 F593, tainless	Reduction factor, seismic shear	αv,seis	ı				0.8			-
ASTM Sta	Resistance modification factor for tension ³	R	1				0.70			-
Ä	Resistance modification factor for shear ³	R	-				0.65			-
<u></u>	Nominal strength as governed by steel	N _{sa}	kN				-			245.7
33, G iss 1 ss	strength	Vsa	kN			<u> </u>	-			147.4
ASTM A193, Gr. 8(M), Class 1 Stainless	Reduction factor, seismic shear	$lpha_{ m v,seis}$	-				-			0.8
STM 8(M) Sta	Resistance modification factor for tension ²	R	-				-			0.80
¥ ~	Resistance modification factor for shear ²	R	-				-			0.75

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf

¹ Values provided for common material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3.

² The tabulated value of the material resistance factors & and &, and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to ductile steel elements.

³ The tabulated value of material resistance factors & and &, and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex Colon Accordance and Values correspond to ductile steel elements.

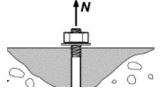
^{4.1.3} of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

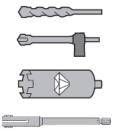
Fractional Reinforcing Bars

Steel Strength

TABLE 7B—STEEL DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS

DESIC	N INFORMATION	Symbol	Units			Nominal Reinforcing bar size (Rebar)								
DESIG	NINFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10			
Nomine	al bar diameter	d	in.	3/8	1/2	5/8	3/4	7/8	1	1 ¹ / ₈	1 ¹ / ₄			
NOTTITIE	ai dai diametei	u	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6) (31. 1.0 1.2 (645) (81. 266.9 339 160.1 203 400.4 508				
Bar off	ective cross-sectional area	Ase	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27			
Dai Cili		Ase	(mm²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)			
	Nominal strength as governed by steel	Nsa	kN	29.4	53.4	82.7	117.4	160.1	210.9	266.9	339.0			
ASTM A615 Grade 40	strength	V_{sa}	kN	17.6	32.0	49.6	70.5	96.1	126.5	160.1	203.4			
STM	Reduction for seismic shear	$lpha_{ m V,seis}$	-				0.	70						
8	Resistance modification factor for tension ³	R	-				0.	70						
	Resistance modification factor for shear ³	R	-				0.	65		11/8 (28.6) 1.0 (645) 266.9 5 160.1 3 400.4 3 240.2				
	Nominal strength as governed by steel	N _{sa}	kN	44.0	80.1	124.1	176.2	240.2	316.3	400.4	508.5			
ASTM A615 Grade 60	strength	Vsa	kN	26.4	48.0	74.5	105.7	144.1	189.8	240.2	305.1			
STM	Reduction for seismic shear	$lpha_{V, seis}$	-				0.	70						
8 0	Resistance modification factor for tension ³	R	•				0.	70						
	Resistance modification factor for shear ³	R	•				0.	65						
	Nominal strength as governed by steel	N _{sa}	kN	39.1	71.2	110.3	156.6	213.5	281.1	355.9	452.0			
ASTM A706 Grade 60	strength	V _{sa}	kN	23.5	42.7	66.2	94.0	128.1	168.7	213.5	271.2			
STM	Reduction for seismic shear	αv,seis					0.	70						
AS	Resistance modification factor for tension ²	R	-				0.	80	0 0 0 0 5 5 240.2 316.3 400.4 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
	Resistance modification factor for shear ²	R	-				0.	75						


For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf


¹ Values provided for common material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3.

² The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to ductile steel elements.

³ The tabulated value of material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

Fractional Threaded Rod and **Reinforcing Bars**

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit Diamond Core Bit + Roughening Tool, or Diamond Core Bit

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS ALL DRILLING METHODS¹

ALL DRILLING METHODS														
						Nomina	rod dia	meter (iı	n.) / Reiı	nforcing	bar size	•		
DESIGN INFORMATION	Symbol	Units	³/ ₈ or #3	1/2	#4	⁵ / ₈	#5	³ / ₄	#6	⁷ / ₈	#7	1 or #8	#9	1 ¹ / ₄ or #10
Effectiveness factor	k _{c.cr}	SI						7	7					
for cracked concrete	110,01	(in-lb)						(1	7)					
Effectiveness factor		SI						1	0					
for uncracked concrete	K c,uncr	(in-lb)						(2	4)					
Minimum	h _{ef.min}	mm	60	70	60	79	76	89	76	89	85	102	114	127
Embedment	I let,min	(in.)	$(2^3/_8)$	$(2^3/_4)$	$(2^3/_8)$	$(3^{1}/_{8})$	(3)	$(3^1/_2)$	(3)	$(3^1/_2)$	$(3^3/_8)$	(4)	$(4^1/_2)$	(5)
Maximum	h _{ef.max}	mm	191	254	254	318	318	381	381	445	445	508	572	635
Embedment	I let,max	(in.)	$(7^1/_2)$	(10)	(10)	$(12^{1}/_{2})$	$(12^{1}/_{2})$	(15)	(15)	$(17^1/_2)$	$(17^{1}/_{2})$	(20)	$(22^{1}/_{2})$	(25)
Min. anchor spacing ³	٠.	mm	48	64	64	79	79	95	95	111	111	127	143	159
Will. alichor spacing	or spacing ^s s _{min}	(in.)	$(1^7/_8)$	$ (1^{7/8}) (2^{1/2}) (2^{1/2}) (3^{1/8}) (3^{1/8}) (3^{3/4}) (3^{3/4}) (4^{3/8}) (4^{3/8}) (5) (5^{5/8}) (6^{1/8})$								$(6^{1}/_{4})$		
Min. edge distance ³	C _{min}	-		5d; or see Table 1 of this report for design with reduced minimum edge distances										
Minimum concrete	h _{min}	mm		h _{ef} + 30)					h _{ef} + 2d ₀	(3)			
thickness		(in.)		$(h_{ef} + 1^{1})$	4)									
Critical edge distance – splitting (for uncracked concrete)	Cac	-						2/	Πef					
Resistance modification factor for tension, concrete failure modes, Condition B ²														
Resistance modification factor for shear, concrete failure modes, Condition B ²														

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Additional setting information is described in Figure 2, Manufacturers Printed Installation Instructions (MPII).
² Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors 𝚱 and 𝔞s, and resistance modification factor, 𝒦, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. 3 d_0 = hole diameter.

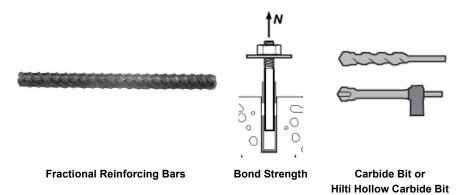


TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

		HAMIMER D							orcing bar			
DESIG	N INFO	DRMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
			,	mm	60	60	76	76	85	102	114	127
IVIINIMU	ım Emr	pedment	h _{ef,min}	(in.)	$(2^3/_8)$	(23/8)	(3)	(3)	(33/8)	(4)	(41/2)	(5)
N 4i		hl	-	mm	191	254	318	381	445	508	572	635
iviaxim	um Em	bedment	h _{ef,max}	(in.)	$(7^1/_2)$	(10)	$(12^1/_2)$	(15)	(17 ¹ / ₂)	(20)	(221/2)	(25)
rated	Temperature range A ²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	9.3	9.4	9.6	9.7	9.7	9.8	9.6	9.3
ter Satu	Tempe	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	12.2	12.0	11.9	11.7	11.5	11.3	11.2	11.0
Dry concrete and Water Saturated Concrete	Temperature range B ²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	6.4	6.5	6.6	6.7	6.7	6.8	6.6	6.4
ncrete a	Tempe	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.4	8.3	8.2	8.1	7.9	7.8	7.7	7.6
y co	Ancho	r Category	-	-	1	1	1	1	1	1	1	1
۵		ance modification factor	R _d , R _{ws}	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	rature e A²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	6.9	6.9	7.2	7.3	7.4	7.5	7.4	7.2
ole	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	9.0	8.9	8.9	8.8	8.7	8.7	8.6	8.6
Water-filled hole	Femperature range B ²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.7	4.8	5.0	5.0	5.1	5.2	5.1	5.0
Wate	Tempe	Characteristic bond strength in uncracked concrete	T _{k,uncr}	MPa	6.2	6.1	6.1	6.1	6.0	6.0	5.9	5.9
	Ancho	r Category	-	-	3	3	3	3	3	3	3	3
	Resist	ance modification factor	R _{wf}	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	Temperature range A ²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	5.9	6.1	6.3	6.5	6.6	6.9	6.7	6.8
ncrete	Tempe	Characteristic bond strength in uncracked concrete	T _{k,uncr}	MPa	7.9	7.8	7.9	7.9	7.9	7.9	7.8	8.0
Submerged concrete	Femperature range B ²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa	4.1	4.2	4.4	4.5	4.6	4.7	4.6	4.7
Subme	Tempera range	Characteristic bond strength in uncracked concrete	T _{k,uncr}	MPa	5.4	5.4	5.4	5.4	5.4	5.5	5.4	5.5
	Ancho	r Category	-	ı	3	3	3	3	3	3	3	3
	Resist	ance modification factor	Ruw	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Reduct	ion for	seismic tension	α _{N,seis}	-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c / 17.2)^{0.25}$ for uncracked concrete [For pound-inch (f_c $(7.500)^{0.25}$ and $(7.7)^{0.15}$ for cracked concrete [For pound-inch: $(7.7)^{0.15}$].

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F). Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Reinforcing Bars

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 10—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DECK	CAL INFORMATI	ON.	Ob. ad	l locido			Nominal reinforcing bar size			
DESI	GN INFORMATI	ON	Symbol	Units	#5	#6	#7	#8	#9	
Minim	um Embedment		h _{ef.min}	mm	76	76	85	102	115	
IVIIIIIII	ium Embeument		I let,min	(in.)	(3)	(3)	$(3^3/_8)$	(4)	(41/2)	
Mayin	num Embedmen	t	h _{ef.max}	mm	318	286	445	508	573	
WIGAIII	nam Embeamen	•	r er, max	(in.)	(12½)	(11 1/4)	(17½) (20)		(22½)	
ted	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	6.7	6.8	6.8	6.9	6.7	
saturated te	range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	11.9	11.7	11.5	11.3	11.2	
water sa	Temperature	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa	4.6	4.7	4.7	4.8	4.6	
and w	range B ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.2	8.1	7.9	7.8	7.7	
Dry	Anchor Catego	ry	-	-	1	1	1	1	1	
_	Resistance mo	dification factor	R _d , R _{ws}	-	1.00	1.00	1.00	1.00	1.00	
Redu	ction for seismic	tension	αN,seis	-	0.9	0.9	0.9	0.9	0.9	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).

³ Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Reinforcing Bars

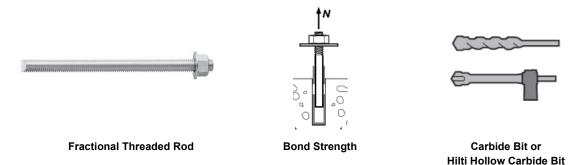
Bond Strength

Diamond Core Bit

TABLE 11—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DEGLO	N INFORMATION		Obl	Unita	Nominal reinforcing bar size								
DESIG	IN INFORMATION		Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10	
Minimu	um Embedment		h	mm	60	60	76	76	85	102	114	127	
IVIIIIIIII	annum Embedment		h _{ef,min}	(in.)	$(2^3/_8)$	$(2^3/8)$	(3)	(3)	$(3^3/_8)$	(4)	$(4^1/_2)$	(5)	
Mavim	aximum Embedment		h .	mm	191	254	318	381	445	508	572	635	
IVIAXIIII			h _{ef,max}	(in.)	$(7^1/_2)$	(10)	$(12^{1}/_{2})$	(15)	$(17^{1}/_{2})$	(20)	(221/2)	(25)	
saturated te		Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
water			Tk,uncr	MPa	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	
70	Anchor Category		-	-	2	2	3	3	3	3	3	3	
Dry			R _d , R _{ws}	-	0.85	0.85	0.75	0.75	0.75	0.75	0.75	0.75	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


¹ Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi).

¹ Bond strength values correspond to concrete compressive strength f'c = 17.2 MPa (2,500 psi). For concrete compressive strength, f'c, between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: (f_c / 17.2)^{0.25} for uncracked concrete [For pound-inch (f'c / 2,500)^{0.25}].

Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).

Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F)

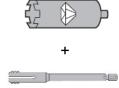
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

	DES	SIGN INFORMATION	Symbol	Units	Nominal rod diameter (in.)								
			Cyc.	• • • • • • • • • • • • • • • • • • •	3/0	1/2	5/。	3/4	7/0	1	11/4		
Minimur	n Embed	lment	h _{ef.min}	mm	60	70	79	89	89	102	127		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(in.)	$(2^3/_8)$	(23/4)	(31/8)	$(3^{1}/_{2})$	(31/2)	(4)	(5)		
Maximu	m Embe	dment	h _{ef,max}	mm	191	254	318	381	445	508	635		
Maxima			Trei,max	(in.)	$(7^1/_2)$	(10)	(12 ¹ / ₂)	(15)	$(17^1/_2)$	(20)	(25)		
	rature e A²	Characteristic bond strength in cracked concrete	Тк,cr	MPa	8.8	8.7	8.7	8.6	8.6	8.5	8.1		
d Water	Temperature range A²	Characteristic bond strength in uncracked concrete	$ au_{K,uncr}$	MPa	16.4	15.8	15.3	14.7	14.1	13.5	12.4		
y concrete and Wate Saturated Concrete	Temperature range B ²	Characteristic bond strength in cracked concrete	Тк,cr	MPa	6.1	6.0	6.0	5.9	5.9	5.9	5.6		
Dry concrete and Water Saturated Concrete	Tempe	Characteristic bond strength in uncracked concrete	$ au_{K,uncr}$	MPa	11.3	10.9	10.5	10.1	9.7	9.3	8.5		
		Category	-	-	1	1	1	1	1	1	1		
	Resista	nce modification factor	Rd, Rws	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
	rature e A²	Characteristic bond strength in cracked concrete	Τκ,cr	MPa	6.5	6.5	6.5	6.5	6.5	6.5	6.4		
ole	Temperature range A²	Characteristic bond strength in uncracked concrete	$ au_{\kappa, uncr}$	MPa	12.1	11.7	11.4	11.0	10.7	10.4	9.7		
Water-filled hole	rature e B²	Characteristic bond strength in cracked concrete	Тĸ,cr	MPa	4.5	4.5	4.5	4.5	4.5	4.5	4.4		
Wate	Temperature range B²	Characteristic bond strength in uncracked concrete	$ au_{\kappa, uncr}$	MPa	8.4	8.1	7.9	7.6	7.4	7.1	6.7		
	Anchor	Category	-	-	3	3	3	3	3	3	3		
	Resista	nce modification factor	R _{wf}	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75		
	rature e A²	Characteristic bond strength in cracked concrete	Τκ,cr	MPa	5.7	5.7	5.8	5.8	5.9	5.9	5.9		
ncrete	Temperature range A²	Characteristic bond strength in uncracked concrete	$ au_{K,uncr}$	MPa	10.6	10.3	10.1	9.9	9.6	9.4	9.0		
Submerged concrete	Temperature range B ²	Characteristic bond strength in cracked concrete	$ au_{\kappa,cr}$	MPa	3.9	3.9	4.0	4.0	4.0	4.1	4.1		
Subme	Tempe	Characteristic bond strength in uncracked concrete	$ au_{K,uncr}$	MPa	7.3	7.1	7.0	6.8	6.6	6.5	6.2		
	Anchor	Category	-	-	3	3	3	3	3	3	3		
	Resista	nce modification factor	Ruw	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75		
Reducti	on for se	ismic tension	ΩN,seis	-	0.92	0.93	0.95	1	1	1	1		

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c / 17.2)^{0.25}$ for uncracked concrete [For pound-inch $(f_c / 2,500)^{0.25}$] and $(f_c / 17.2)^{0.15}$ for cracked concrete [For pound-inch: $(f_c / 2,500)^{0.15}$].


² Temperature range A: Maximum short term temperature = 55° C (130° F), Maximum long term temperature = 43° C (110° F).

Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Bond Strength

Diamond Core Bit + **Roughening Tool**

TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

						Nomina	I rod diamet	er (in.)		
DES	IGN INFORMATION	ON	Symbol	Units	5/8	3/4	7/8	1	11/4	
Minir	num Embedment		h _{ef,min}	mm	79	89	89	102	127	
10111111	nam Embeament		r rer,min	(in.)	$(3^{1}/8)$	$(3^1/_2)$	(3½)	(4)	(5)	
Mavi	mum Embedment		6	mm	318	286	445	508	635	
IVIAXI	mum Embeamen	L	h _{ef,max}	(in.)	(12½)	(1111/4)	(17½)	(20)	(25)	
concrete	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	6.1	6.0	6.0 6.0		5.7	
	range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	15.3	14.7	14.1	13.5	12.4	
saturated	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.2	4.2	4.2	4.1	3.9	
water a	range B²	Characteristic bond strength in uncracked concrete	Tk,uncr	(MPa)	(10.5)	(10.1)	(9.7)	(9.3)	(8.5)	
/ and	Anchor Catego	ory	-	-	1	1	1	1	1	
Dry	Resistance mo	odification factor	R _d , R _{ws}	-	1.00	1.00	1.00	1.00	1.00	
Redu	action for seismic	tension	αn,seis	-	0.95	1	1 1 1			

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional Threaded Rod

Bond Strength

Diamond Core Bit

TABLE 14—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DESIG	N INFORMATIO	M	Symbol	Units			Nomin	al rod diame	ter (in.)		
DESIG	IN INFORMATIO	IN .	Syllibol	Ullits	³ / ₈	1/2	⁵ / ₈	3/4	7/8	1	1 1/4
Minim	um Embedment		h	mm	60	70	79	89	89	102	127
IVIIIIIIII	um Embeament		h _{ef,min}	(in.)	$(2^3/_8)$	$(2^3/4)$	$(3^1/_8)$	$(3^1/2)$	$(3^1/_2)$	(4)	(5)
Manda	Maximum Embedment		-	mm	191	254	318	381	445	508	635
Maxim			h _{ef,max}	(in.)	$(7^1/2)$	(10)	$(12^{1}/_{2})$	(15)	$(17^1/2)$	(20)	(25)
saturated ncrete	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	10.7	10.7	10.7	10.7	10.7	10.7	10.7
Dry concrete Water satura concrete	to the terminal of the termina		T _{k,uncr}	MPa	7.4	7.4	7.4	7.4	7.4	7.4	7.4
ال الأي	Anchor Catego	ory	-	-	2	2	3	3	3	3	3
	Resistance mo	dification factor	R_{d} , R_{ws}	-	0.85	0.85	0.75	0.75	0.75	0.75	0.75

For SI: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi).

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F). Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

¹ Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c / 17.2)^{0.25}$ for uncracked concrete [For pound-inch $(f_c / 17.2)^{0.25}$] for uncracked

^{2,500)&}lt;sup>0.25</sup>]. ⁵ Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).

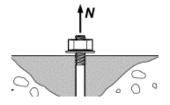
Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

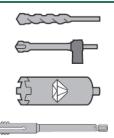
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod and EU Metric Reinforcing Bars

Steel Strength

TABLE 15—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS


	TABLE 15—STEEL				01011110				eter (mm) ¹	<u> </u>		
DESIG	N INFORMATION	Symbol	Units	8	10	12	10		20	24	27	30
			mm	8	10	12	10	6	20	24	27	30
Rod Ot	ıtside Diameter	d	(in.)	(0.31)	(0.39)	(0.47	(0.6	33)	(0.79)	(0.94)	(1.06)	(1.18)
D . "		4	mm ²	36.6	58.0	84.3	15	7	245	353	459	561
коа еп	ective cross-sectional area	A _{se}	(in.²)	(0.057)	(0.090)	(0.131) (0.2	43) ((0.380)	(0.547)	(0.711)	(0.870)
	Nominal strength as governed	N _{sa}	kN	18.3	29.0	42.0	78	.5	122.5	176.5	229.5	280.5
ISO 898-1 Class 5.8	by steel strength	V _{sa}	kN	11.0	14.5	25.5	47	.0	73.5	106.0	137.5	168.5
SO 8	Reduction for seismic shear	$lpha_{V,seis}$	-					1.00				
	Resistance modification factor for tension ³	R	-					0.70				
	Resistance modification factor for shear ³	R	-		1	<u>, </u>	1	0.65	1		· · · · · · · · · · · · · · · · · · ·	
	Nominal strength as governed	N _{sa}	kN	29.3	46.5	67.5	125	5.5	196.0	282.5	367.0	449.0
8-1 8.8	by steel strength	V _{sa}	kN				117.5	169.5	220.5	269.5		
SO 898-1 Class 8.8	Reduction for seismic shear	αv,seis	-	1.00								
<u>8</u> 5	Resistance modification factor for tension ³	R	-					0.70				
	Resistance modification factor for shear ³	R	-	0.65								
	Nominal strength as governed	N _{sa}	kN	25.6	40.6	59.0	109	9.9	171.5	247.1	229.5	280.5
ISO 3506-1 Class A4 Stainless ³	by steel strength	V_{sa}	kN	15.4	20.3	35.4	65	.9	102.9	148.3	137.7	168.3
506-' Stain	Reduction for seismic shear	lphaV,seis	-					0.80				
ISO 3 A4	Resistance modification factor for tension ³	R	-					0.70				
	Resistance modification factor for shear ³	R	-					0.65				
DESIG	N INFORMATION	Symbol	Units			N	ominal rein	forcing ba	r diameter	(mm)		
		3,	J	10	12	14	16	20	25	28	30	32
Nomina	al bar diameter	d	mm (in.)	10.0 (0.394)	12.0 (0.472)	14.0 (0.551)	16.0 (0.630)	20.0 (0.787)	25.0 (0.984	28.0) (1.102	30.0) (1.224)	32.0 (1.260)
			mm ²	78.5	113.1	153.9	201.1	314.2	490.9	615.8	706.9	804.2
Bar effe	ective cross-sectional area	Ase	(in.²)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761			(1.247)
0	Nominal strength as governed	N _{sa}	kN	43.0	62.0	84.5	110.5	173.0	270.0	338.5	388.8	442.5
	by steel strength	V _{sa}	kN	26.0	37.5	51.0	66.5	103.0	162.0	203.0	233.3	265.5
3 BSi	Reduction for seismic shear	$\alpha_{V,seis}$	-	I				0.70	1	1	ı	1
)IN 486	Resistance modification factor for tension ³	R	-					0.70				
	Resistance modification factor for shear ³		-					0.65				


¹ Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3.

² The tabulated value of material resistance factors & and &, and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

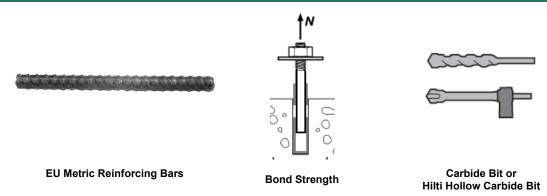
³ A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

Metric Threaded Rod and EU Metric Reinforcing Bars

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit Diamond Core Bit + Roughening Tool, or Diamond Core Bit

TABLE 16—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS ALL DRILLING METHODS¹


		Units									
DESIGN INFORMATION	Symbol	Units	8	10	12	16	20)	24	27	30
Minimum Embedment	h _{ef.min}	mm	60	60	70	80	90) 1	00	110	120
Millimum Embedment	I lef,min	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5	5) (3	3.9)	(4.3)	(4.7)
Maximum Embedment	h _{ef,max}	mm	160	200	240	320	400	0 4	80	540	600
Maximum Embodinent	Hei,iiiax	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.	7) (1	8.9)	(21.4)	(23.7)
Min. anchor spacing ³	Smin	mm	40	50	60	80	100		20	135	150
g	Griiiii	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9	9) (4	1.7)	(5.3)	(5.9)
Min. edge distance³	C _{min}	-	5d; o	r see Table	e 1 of this i	eport for o	lesign with	reduced i	minimum	edge dista	nces
Minimum concrete thickness	h _{min}	mm	h _{ef} +	- 30				h _{ef} + 2d _o ⁽⁴⁾)		
Willimum concrete unckness	I Imin	(in.)	(h _{ef} +	11/4)				Tlef + ZUo			
DESIGN INFORMATION	Symbol	Units			Nomi	nal reinfor	cing bar o	diameter (mm)		
DESIGN IN ORMATION	10 12 14 16 20 25 28							28	30	32	
Minimum Embedment	h _{ef.min}	mm	60	70	80	80	90	100	112	120	128
	l let,min	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Maximum Embedment	h _{ef,max}	mm	200	240	280	320	400	500	560	600	640
Maximum Embedment	r rei,max	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
Min. anchor spacing ³	Smin	mm	50	60	70	80	100	125	140	150	160
g	Giiiiii	(in.)	(2.0)	(2.4)	(2.8)	(3.2)	(3.9)	(4.9)	(5.5)	(5.9)	(6.3)
Min. edge distance³	C _{min}	-	5d; o	r see Table	e 1 of this i	eport for o	lesign with	reduced i	minimum	edge dista	nces
Minimum concrete thickness	h	mm	h _{ef} + 30				h	- 2d _o ⁽⁴⁾			
Minimum concrete thickness	h _{min}	(in.)	$(h_{ef} + 1^1/_4)$)			∏ef [†]	- 2 0 017			
Critical edge distance – splitting (for uncracked concrete)	Cac	-					2h _{ef}				
Effectiveness factor for	,	SI					7.1				
cracked concrete	K _{c,cr}	(in-lb)					(17)				
Effectiveness factor for		SI					10				
uncracked concrete	k c,uncr	(in-lb)					(24)				
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-					1.00				
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-	- 1.00								

For **SI**: 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Additional setting information is described in Figure 2, Manufacturers Printed Installation Instructions (MPII).

² Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors φ_c and φ_s, and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

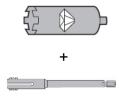
³ d_0 = hole diameter.

TABLE 17—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DEC	ION INFORMATI	ON	Oh al	l lada			Non	ninal reinfo	rcing bar	diameter (mm)		
DE2	IGN INFORMATI	ON	Symbol	Units	10	12	14	16	20	25	28	30	32
Minis	num Embadmant		6	mm	60	70	80	80	90	100	112	120	128
IVIIIIII	num Embedment		h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Movi	mum Embedmen	•	h _{ef.max}	mm	200	240	280	320	400	500	560	600	640
IVIAXI	mum Embeumen		l lef,max	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
o.	Temperature range A ² Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete		Tk,cr	MPa	9.3	9.4	9.5	9.6	9.7	9.8	9.7	9.5	9.3
and concrete	range A²	strength in uncracked	T _{K,} uncr	MPa	12.2	12.1	12.0	11.8	11.6	11.4	11.2	11.1	11.0
Dry concrete and er saturated conc	Temperature range B ² Characteristic bond strength in cracked concrete Characteristic bond		Tk,cr	MPa	6.4	6.5	6.5	6.6	6.7	6.8	6.7	6.5	6.4
Dry Water sa	range A ² Characteristic bond strength in uncracked concrete Characteristic bond strength in cracked concrete Temperature range B ² Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete		Tk,uncr	MPa	8.4	8.3	8.3	8.2	8.0	7.8	7.7	7.7	7.6
	Anchor Category		-	-	1	1	1	1	1	1	1	1	1
	Resistance mo	dification factor	R _d , R _{ws}	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Temperature range A ²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	6.9	6.9	7.0	7.2	7.4	7.4	7.4	7.4	7.2
hole		Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	9.0	8.9	8.9	8.9	8.8	8.7	8.6	8.6	8.6
Water-filled hole	Temperature	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa	4.7	4.8	4.8	5.0	5.1	5.1	5.1	5.1	5.0
Wat	range B²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	6.2	6.2	6.1	6.1	6.1	6.0	5.9	5.9	5.9
	Anchor Catego	ry	-	-	3	3	3	3	3	3	3	3	3
	Resistance mo	dification factor	R _{wf}	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	Temperature	Characteristic bond strength in cracked concrete	T _{k,cr}	MPa	6.0	6.1	6.2	6.3	6.6	6.8	6.8	6.8	6.8
ncrete	range A²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	7.9	7.8	7.8	7.8	7.9	7.8	7.9	8.0	8.0
Submerged concrete	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.2	4.2	4.3	4.4	4.6	4.7	4.7	4.7	4.7
Subme	range B²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.5	5.5
	Anchor Catego	ry	-	-	3	3	3	3	3	3	3	3	3
	Resistance modification factor		Ruw	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Redu	uction for seismic	tension	CLN, seis	-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c/17.2)^{0.25}$ for uncracked concrete [For pound-inch $(f_c/2,500)^{0.25}$] and $(f_c/17.2)^{0.15}$ for cracked concrete [For pound-inch: $(f_c/2,500)^{0.15}$].


² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).

Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time

EU Metric Reinforcing Bars

Bond Strength

Diamond Core Bit + **Roughening Tool**

TABLE 18—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL1

DECK	ON INCODMAT	ION	Ob. ad	11		Nominal rei	nforcing bar dia	ameter (mm)	
DESIG	SN INFORMAT	ION	Symbol	Units	14	16	20	25	28
Minim	um Embedmen	•	h	mm	80	80	90	100	112
IVIIIIIIII	ulli Ellibedilleli	L	h _{ef,min}	(in.)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)
Movie	num Embedmer	. +	h	mm	280	320	400	500	560
IVIAXIII			h _{ef,max}	(in.)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)
Φ	Characteristic bond strength in cracked concrete		Tk,cr	MPa	6.7	6.7	6.8	6.9	6.8
ted concret	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	12.0	11.8	11.6	11.4	11.2
and water saturated concrete	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.6	4.6	4.7	4.8	4.7
Dry and w	Characteristic bond strength in uncracked concrete		Tk,uncr	MPa	8.3	8.2	8.0	7.8	7.7
	Anchor Catego	ory	-	-	1	1	1	1	1
	Resistance mo	dification factor	R _d , R _{ws}	-	1.00	1.00	1.00	1.00	1.00
Reduc	duction for seismic tension		αN,seis	-	0.9	0.9	0.9	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

 1 Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). 2 Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F). Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

EU Metric Reinforcing Bars

Bond Strength

Diamond Core Bit

TABLE 19—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DE010	N INCORMATIO		0	11.24.			Non	ninal reinfo	orcing bar	diameter (mm)		
DESIG	N INFORMATIO	N .	Symbol	Units	10	12	14	16	20	25	28	30	32
Minimu	Minimum Embedment			mm	60	70	80	80	90	100	112	120	128
IVIITIITIU	ım Embedmeni		h _{ef,min}	(in.)	(2.4)	(2.8)	(3.1)	(3.1)	(3.5)	(3.9)	(4.4)	(4.7)	(5.0)
Maxim	Maximum Embedment		h.	mm	200	240	280	320	400	500	560	600	640
IVIAXIIII	Maximum Embedment		h _{ef,max}	(in.)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(23.7)	(25.2)
Saturated	Temperature range A²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Water	Temperature range B ² strength in uncracked concrete		Tk,uncr	MPa	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Dry and	Anchor Category	'	-		2	2	2	3	3	3	3	3	3
	Resistance modification factor		R _d , R _{ws}		0.85	0.85	0.85	0.75	0.75	0.75	0.75	0.75	0.75

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c / 17.2)^{0.25}$ for uncracked concrete [For pound-inch $(f_c / 17.2)^{0.25}$] for uncracked

^{2,500)&}lt;sup>25</sup>].

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).

Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

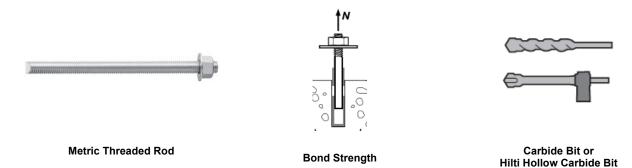


TABLE 20—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

					JE BIT (01)	THETTHOL	LOW CAR	ominal rod		n)		
DE	SIGN II	NFORMATION	Symbol	Units	8	10	12	16	20	24	27	30
				mm	60	60	70	80	90	100	110	120
Mir	nimum E	Embedment	$h_{\it ef,min}$	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
				mm	160	200	240	320	400	480	540	600
Ма	ximum	Embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
crete	rature e A²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa	8.8	8.8	8.8	8.7	8.6	8.5	8.5	8.4
Dry and Water Saturated Concrete	Temperature range ${\sf A}^2$	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	16.7	16.3	16.0	15.2	14.5	13.8	13.2	12.7
er Satura	Temperature range B²	Characteristic bond strength in cracked concrete	T _{k,Cr}	MPa	6.1	6.1	6.0	6.0	5.9	5.9	5.9	5.8
ınd Wate	Characteristic bond strength in uncracke concrete Anchor Category Pesistance modification		$ au_{k,uncr}$	MPa	11.5	11.3	11.0	10.5	10.0	9.5	9.1	8.7
ζa	Anchor Category Resistance modification		-	-	1	1	1	1	1	1	1	1
۵	factor		R_{d} , R_{ws}	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Characteristic bond strength in cracked concrete		Tk,cr	MPa	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
ole		Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	12.3	12.1	11.8	11.4	11.0	10.5	10.2	9.8
Water-filled hole	Temperature range B²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Wat	Temperang	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.5	8.3	8.2	7.9	7.6	7.2	7.0	6.8
	Anch	or Category	-	-	3	3	3	3	3	3	3	3
	Resis facto	stance modification	R _{wf}	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
		Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa	5.7	5.7	5.7	5.7	5.8	5.9	6.0	6.0
ncrete	Temperature range ${\sf A}^2$	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	10.7	10.5	10.4	10.1	9.8	9.5	9.3	9.1
Submerged concrete	Temperature range B ²	Characteristic bond strength in cracked concrete	T _{k,Cr}	MPa	3.9	3.9	3.9	4.0	4.0	4.1	4.1	4.2
Subme		Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	7.4	7.3	7.2	7.0	6.8	6.6	6.4	6.3
		or Category	-	-	3	3	3	3	3	3	3	3
	Resis facto	stance modification r	Ruw	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Re	duction	for seismic tension	αN,seis	-	1	0.92	0.93	0.95	1	1	1	1

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c / 17.2)^{0.25}$ for uncracked concrete [For pound-inch $(f_c / 2,500)^{0.25}$] and $(f_c / 17.2)^{0.15}$ for cracked concrete [For pound-inch: $(f_c / 2,500)^{0.15}$].

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).

Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 21—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DECICA	LINEODMATION		0	Haita		Nomi	nal rod diameter	· (mm)	
DESIGN	NINFORMATION		Symbol	Units	16	20	24	27	30
Minimur	m Embedment		h _{ef.min}	mm	80	90	100	110	120
Willillill	II EIIIDeament		I lef,min	(in.)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Maximu	m Embedment		h _{ef,max}	mm	320	400	480	540	600
Maximu	III EIIIDeament		I lef,max	(in.)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
crete	Temperature range A ² Characteristic bond strength in cracked concrete Characteristic bond		Tk,cr	MPa	6.1	6.0	6.0	6.0	5.9
	range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	15.2	14.5	13.8	13.2	12.7
ter saturated	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.2	4.2	4.2	4.2	4.1
and	range B ² Characteristic bond strength in uncracked concrete		Tk,uncr	MPa	10.5	10.0	9.5	9.1	8.7
ارم	Anchor Category		-	-	1	1	1	1	1
_	Resistance mo	dification factor	R _d , R _{ws}	-	1.00	1.00	1.00	1.00	1.00
Reducti	on for seismic ten	sion	αn,seis	-	0.95	1	1	1	1

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Metric Threaded Rod

Bond Strength

Diamond Core Bit

TABLE 22—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED RODS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DECK	ON INFORMATION	ANI	Cumbal	Units			No	minal rod o	liameter (r	nm)		
DESIG	3N INFORMATIC	JN .	Symbol	Units	8	10	12	16	20	24	27	30
Minim	um Embedment		6	mm	60	60	70	80	90	100	110	120
IVIIIIIIII	um Embeament		h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.9)	(4.3)	(4.7)
Marring	Maximum Embedment		6	mm	160	200	240	320	400	480	540	600
Maxim			h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
ete and ed concrete	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7
	Temperature range B ² Characteristic bond strength in uncracked concrete		Tk,uncr	MPa	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
□ afe	Anchor Catego	ory	-	-	2	2	2	3	3	3	3	3
×	Anchor Category Resistance modification factor		$R_{d_i}R_{ws}$	-	0.85	0.85	0.85	0.75	0.75	0.75	0.75	0.75

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi).

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F). Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

¹ Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: (f'c / 17.2)0.25 for uncracked concrete [For pound-inch

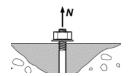
² Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F). Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

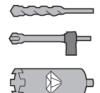
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Canadian Reinforcing Bars

Steel Strength

TABLE 23—STEEL DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS1


D E	CICN INFORMATION	Complete al	l lucita		Nomina	al reinforcing b	ar size		
DE	SIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M	
No	minal bar diameter	d	mm	11.3	16.0	19.5	25.2	29.9	
INOI	Tililai pai diametei	u	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)	
Por	Bar effective cross-sectional area		mm ²	100.3	201.1	298.6	498.8	702.2	
Dai	Bar eπective cross-sectional area		(in. ²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)	
	Nominal strength as governed by steel	N _{sa}	kN	54.0	108.5	161.5	270.0	380.0	
30	strength	V _{sa}	kN	32.5	65.0	97.0	161.5	227.5	
G	Reduction for seismic shear	αv,seis	1			0.70			
CSA	Resistance modification factor for tension ³		-	0.70					
	Resistance modification factor for shear ³		-	0.65					


For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

² The tabulated value of material resistance factors φ_c and φ_s, and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

Canadian Reinforcing Bars

Concrete Breakout Strength

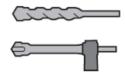
Carbide Bit or Hilti Hollow Carbide Bit or Diamond Core Bit

TABLE 24—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT), OR DIAMOND CORE BIT

DECICAL INFORMATION	0	11.24.		Nonm	inal reinforcing b	ar size	
DESIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
Effectiveness factor for cracked concrete	1-	SI			7.1		
Effectiveness factor for cracked concrete	K _{c,cr}	(in-lb)			(17)		
Effectiveness factor for uncracked concrete	le.	SI			10		
Effectiveness factor for uncracked concrete	K _{c,uncr}	(in-lb)			(24)		_
Minimum Embedment	h	mm	60	80	90	101	120
Millimum Embedment	h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)
Maximum Embedment	h	mm	226	320	390	504	598
Maximum Empedment	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)
Min. bar spacing ³	_	mm	57	80	98	126	150
Mill. bai spacing	Smin	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)
Min. edge distance ³		mm	5d; or see Table 1 of this report for design with reduced minim				nimum edge
win. edge distance-	Cmin	(in.)			distances		-
Minimum concrete thickness	h _{min}	mm	h _{ef} + 30		h _{ef} + 2	24 (3)	
William Concrete trickness	I Imin	(in.)	$(h_{ef} + 1^{1}/_{4})$		liet T i	2 u ₀ , ,	
Critical edge distance – splitting (for uncracked concrete)	Cac	-			2h _{ef}		
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-			1.00		
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-			1.00		

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3.


¹ Additional setting information is described in Figure 2, Manufacturers Printed Installation Instructions (MPII).

² Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

 $^{^3}$ d_0 = hole diameter.

Canadian Reinforcing Bars

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 25—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DESIG	N INFORMATION		Symbol	Units		Nomi	nal reinforcing ba	ar size	
DEGIO	IN INTO CRIMATION		Oyiliboi	Office	10M	15M	20M	25M	30M
Minimu	ım Embedment		h	mm	60	80	90	101	120
IVIIIIIIII	iiii Liiibediiieiit		h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)
Maximi	um Embedment		h _{ef.max}	mm	226	320	390	504	598
Maximi	in Linbedinent		l let,max	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)
rated	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	9.4	9.6	9.7	9.8	9.5
ter Satur	range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	12.1	11.8	11.7	11.3	11.1
and Wate Concrete	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	6.5	6.6	6.7	6.8	6.5
Dry concrete and Water Saturated Concrete	range B ² Characteristic bond strength in uncracke concrete Anchor Category		Tk,uncr	MPa	8.4	8.2	8.0	7.8	7.7
Ory (Anchor Category		-	-	1	1	1	1	1
	Resistance modification factor		R _d , R _{ws}	-	1.00	1.00	1.00	1.00	1.00
	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	6.9	7.2	7.3	7.4	7.3
hole	range A ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	8.9	8.9	8.8	8.6	8.5
Water-filled hole	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.8	5.0	5.0	5.1	5.0
Wat	range B²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	6.2	6.1	6.1	6.0	5.9
	Anchor Catego	ry	-	-	3	3	3	3	3
	Resistance mo	dification factor	R _{wf}	-	0.75	0.75	0.75	0.75	0.75
	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	6.1	6.3	6.5	6.8	6.6
ncrete	range A ² Characteristic bond		Tk,uncr	MPa	7.8	7.8	7.8	7.8	7.8
Submerged concrete	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.2	4.4	4.5	4.7	4.6
Subm	range B ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	5.4	5.4	5.4	5.4	5.4
	Anchor Catego	ry	-	-	3	3	3	3	3
		dification factor	R_{uw}	-	0.75	0.75	0.75	0.75	0.75
Reduct	tion for seismic ter	nsion	<i>α</i> N,seis	-	0.9	0.9	0.9	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c / 17.2)^{0.25}$ for uncracked concrete [For pound-inch $(f_c / 2,500)^{0.25}$] and $(f_c / 17.2)^{0.15}$ for cracked concrete [For pound-inch: $(f_c / 2,500)^{0.15}$].

²Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).

Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time

Canadian Reinforcing Bars

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 26A—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DESIG	N INFORMATION		Cumbal	Units	Nominal reinfo	orcing bar size
DESIG	SN INFORMATION		Symbol	Units	15M	20M
Minim	um Embedment		h _{ef.min}	mm	80	90
IVIIIIIIII	um Embeament		r rer, min	(in.)	(3.1)	(3.5)
Maxim	um Embedment		h .	mm	320	390
IVIAXIIII	um Embeument	_	h _{ef,max}	(in.)	(12.6)	(15.4)
concrete	Temperature range A ²	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	MPa	6.7	6.8
aturated co	remperature range A	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	11.8	11.7
S	Temperature range B²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.6	4.7
and Water	remperature range b	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.2	8.0
	Anchor Category	-	-	1	1	
Dry	Resistance modification	R _d , R _{ws}	-	1.00	1.00	
Reduc	tion for seismic tension		αN,seis	-	0.9	0.9

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Canadian Reinforcing Bars

Bond Strength

Diamond Core Bit

TABLE 26B—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DESIG	DESIGN INFORMATION			Units	Nominal reinforcing bar size						
DESIG	IN INFORMATION		Symbol	Units	10M	15M	20M	25M	30M		
Minimu	ım Embedment	h	mm	60	80	90	101	120			
IVIIIIIII	in Embedment	h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)			
Movim	um Embedment	h	mm	226	320	390	504	598			
Maxilli	um Embeament		h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)		
/ater ed te	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.0	8.0	8.0	8.0	8.0		
ry and Water Saturated concrete	Temperature range B ²	emperature range B ² Characteristic bond strength in uncracked concrete			5.5	5.5	5.5	5.5	5.5		
Sas	Anchor Category	-	-	2	3	3	3	3			
	Resistance modification	factor	R_{d} , R_{ws}	-	0.85	0.75	0.75	0.75	0.75		

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹ Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi).

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F). Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

¹ Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c / 17.2)^{0.25}$ for uncracked concrete [For pound-inch $(f_c / 17.2)^{0.25}$] for uncracked

²Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F) Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

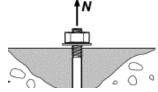
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

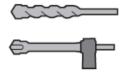
Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Steel Strength

TABLE 27—STEEL DESIGN INFORMATION FOR FRACTIONAL AND METRIC HIS-N AND HIS-RN THREADED INSERTS1

DES	SIGN INFORMATION	Symbol	Units	Nomina	al Bolt/Cap (in.) Fra		iameter	Units	Nominal Bolt/Cap Screw Diameter (mm) Metric					
DES	JON IN OKWATION	Symbol	Oilles	³ / ₈	1/2	⁵ / ₈	3/4	Units	8	10	12	16	20	
	110.0	_	in.	0.65	0.81	1.00	1.09	mm	12.5	16.5	20.5	25.4	27.6	
HIS	Insert O.D.	D	(mm)	(16.5)	(20.5)	(25.4)	(27.6)	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)	
ше	insert length	1	in.	4.33	4.92	6.69	8.07	mm	90	110	125	170	205	
піз	insert length	ı	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.54)	(4.33)	(4.92)	(6.69)	(8.07)	
	effective cross-	Ase	in. ²	0.0775	0.1419	0.2260	0.3345	mm ²	36.6	58	84.3	157	245	
	ional area	Ase	(mm ²)	(50)	(92)	(146)	(216)	(in. ²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)	
	insert effective cross-	A _{insert}	in. ²	0.178	0.243	0.404	0.410	mm ²	51.5	108	169.1	256.1	237.6	
sect	ional area	- Indere	(mm²)	(115)	(157)	(260)	(265)	(in.²)	(0.080)	(0.167)	(0.262)	(0.397)	(0.368)	
3 B7	Nominal steel strength – ASTM	N _{sa}	kN	43.1	78.9	125.7	186.0	kN	-	-	-	-	-	
ASTM A193	A193 B73 bolt/cap screw	V _{sa}	kN	25.9	47.3	75.4	111.6	kN	-	1	-	-	-	
AST	Nominal steel strength – HIS-N insert	Nsa	kN	56.3	76.7	127.6	129.7	kN	-	-	-	-	-	
33 SS	Nominal steel strength – ASTM	Nsa	kN	37.9	69.4	110.6	163.7	kN	-	1	-	ı	1	
ASTM A193 Grade B8M S	A193 Grade B8M SS bolt/cap screw	V _{sa}	kN	22.8	41.7	66.3	98.2	kN	-	-	-	-	-	
AS	Nominal steel strength – HIS-RN insert	N _{sa}	kN	80.4	109.6	182.2	185.2	kN	-	-	-	-	-	
- w	Nominal steel strength – ISO 898-	N _{sa}	(kN)	-	-	-	-	kN	29.5	46.5	67.5	125.5	196.0	
ISO 898-1 Class 8.8	1 Class 8.8 bolt/cap screw	V _{sa}	(kN)	-	-	-	-	kN	17.5	28.0	40.5	75.5	117.5	
<u> </u>	Nominal steel strength – HIS-N insert	N _{sa}	(kN)	ı	ı	1	-	kN	25.0	53.0	83.0	125.5	116.5	
Slass less	Nominal steel strength – ISO 3506-1 Class A4-70	N _{sa}	(kN)	ı	ı	ı	-	kN	25.5	40.5	59.0	110.0	171.5	
O 3506-1 Class 4-70 Stainless	Stainless bolt/cap screw	V _{sa}	(kN)	-	-	-	-	kN	15.5	24.5	35.5	66.0	103.0	
$1 \sim 4$	Nominal steel strength – HIS-RN insert	N _{sa}	(kN)	-	-	-	-	kN	36.0	75.5	118.5	179.5	166.5	
Red shea	uction for seismic ar	αV,seis	-		0.9	94		-			0.94			
facto	istance modification or for tension ²	R	-		0.	70		-			0.70			
	istance modification or for shear ²	R	-		0.0	65		-			0.65			


For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.


¹ Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3.

The tabulated value of material resistance factors & and &, and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

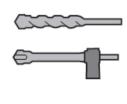
3 For the calculation of the design steel strength in tension and shear for the bolt or screw, the *R* factor for ductile steel failure according to CSA A23.3-14 Section D.5.3, as applicable, can be used.

Fractional and Metric HIS-N and HIS-RN Internal Threaded Insert Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 28—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

DESIGN INFORMATION	Symbol	Units	Nomina		o Screw Dactional	Diameter	Units	No	minal Bol (r	t/Cap Scr nm) Metr		eter	
			³ / ₈	1/2	⁵ / ₈	3/4		8	10	12	16	20	
Effectiveness factor for		in-lb		1	7	SI	7.1						
cracked concrete	K _{c,cr}	(SI)		(7	.1)		(in-lb)	(17)					
Effectiveness factor for	K _{c,uncr}	in-lb		2	4		SI			10			
uncracked concrete	N c,uncr	(SI)		(1	0)		(in-lb)			(24)			
Effective embedment	h _{ef}	in.	4 ³ / ₈	5	63/4	8 ¹ / ₈	mm	90	110	125	170	205	
depth	Het	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)	
Min. anchor spacing ³		in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140	
wiin. anchor spacing	S _{min}	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)	
Min. edge distance ³		in.	31/4	4	5	5 ¹ / ₂	mm	63	83	102	127	140	
wiiii. euge distance	Cmin	(mm)	(83)	(102)	(127)	(140)	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)	
Minimum concrete	-	in.	5.9	6.7	9.1	10.6	mm	120	150	170	230	270	
thickness	h _{min}	(mm)	(150)	(170)	(230)	(270)	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)	
Critical edge distance – splitting (for uncracked concrete)	Cac	ı		2	h ef		1	2h _{ef}					
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-		1.	00		-	1.00					
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-		1.	00		-	1.00					


For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

¹ Additional setting information is described in Figure 2, Manufacturers Printed Installation Instructions (MPII).

² Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Carbide Bit or Hilti Hollow Carbide Bit

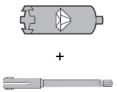
TABLE 29—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

		IN HOLES DRILLE				bolt/cap s						ap screw		mm)
DESIG	GN INF	ORMATION	Symbol	Units	3/8	1/2	⁵ / ₈	3/4	Units	8	10	12	16	20
Embo	dment		h _{ef}	in.	43/8	5	63/4	81/8	mm	90	110	125	170	205
Embe			Hef	(mm)	(110)	(125)	(170)	(205)	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
	Temperature range A²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	7.4	7.4	7.4	7.4	MPa	7.4	7.4	7.4	7.4	7.4
Dry concrete and Water saturated concrete	Tempera	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	12.3	12.3	12.3	12.3	MPa	12.3	12.3	12.3	12.3	12.3
Dry concrete and er saturated conc	rature e B²	Characteristic bond strength in cracked concrete	τ _{k,cr}	MPa	5.1	5.1	5.1	5.1	MPa	5.1	5.1	5.1	5.1	5.1
Dr Water	Temperature range B ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.5	8.5	8.5	8.5	MPa	8.5	8.5	8.5	8.5	8.5
	Anc	hor Category	1	-	1	1	1	1	-	1	1	1	1	1
	Res	istance modification factor	$R_{d,}R_{ws}$	-	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00	1.00
	rature e A²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	5.5	5.5	5.6	5.7	MPa	5.5	5.5	5.6	5.7	5.7
hole	Temperature range A ²	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	9.1	9.2	9.3	9.5	MPa	9.1	9.2	9.3	9.5	9.5
Water-filled hole	Temperature range B ²	Characteristic bond strength in cracked concrete	T _{k,cr}	MPa	3.8	3.8	3.8	3.9	MPa	3.8	3.8	3.8	3.9	3.9
Ň	Tempera range	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	6.3	6.4	6.4	6.5	MPa	6.3	6.4	6.4	6.5	6.6
	Anc	hor Category	-	-	3	3	3	3	-	3	3	3	3	3
	Res	istance modification factor	R_{wf}	-	0.75	0.75	0.75	0.75	-	0.75	0.75	0.75	0.75	0.75
	Temperature range A ²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	4.9	5.0	5.1	5.2	MPa	4.8	4.9	5.0	5.1	5.2
ncrete	Tempe	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.2	8.4	8.6	8.7	MPa	8.0	8.2	8.4	8.6	8.7
Submerged concrete	Temperature range B²	Characteristic bond strength in cracked concrete	Tk,cr	MPa	3.4	3.4	3.5	3.6	MPa	3.3	3.4	3.4	3.5	3.6
Subm	Tempera range	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	MPa	5.6	5.8	5.9	6.0	MPa	5.5	5.6	5.8	5.9	6.0
	Anc	hor Category	-	-	3	3	3	3	-	3	3	3	3	3
	Res	istance modification factor	Ruw	-	0.75	0.75	0.75	0.75	-	0.75	0.75	0.75	0.75	0.75
Reduc	ction fo	r seismic tension	$lpha_{ extsf{N}, extsf{seis}}$	-	1	1	1	1	-	1	1	1	1	1

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

The potential trials of this expectation of the strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi) and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c/17.2)^{0.25}$ for uncracked concrete [For pound-inch: $(f_c/2,500)^{0.25}$] and $(f_c/17.2)^{0.25}$ for cracked concrete [For pound-inch: $(f_c/2,500)^{0.25}$].

Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).


Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly

constant over significant periods of time.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Bond Strength

Diamond Core Bit + Roughening Tool

TABLE 30—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT AND ROUGHENED WITH A HILTI ROUGHENING TOOL¹

DES	IGN INFORMAT	ION	Symbol	Units		ial bolt/cap liameter (in		Units	Nominal bolt/cap screw diameter (mm)					
			-		1/2	5/8	3/4		12	16	20			
Emb	Embedment			in.	5	63/4	8 ¹ / ₈	mm	125	170	205			
EIIID	eumem		h _{ef}	(mm)	(125)	(170)	(205)	(in.)	(4.9)	(6.7)	(8.1)			
Saturated	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	5.2	5.2	5.2	MPa	5.2	5.2	5.2			
ē	range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	12.3	12.3	12.3	MPa	12.3	12.3	12.3			
and Water Concrete	Temperature	Characteristic bond strength in cracked concrete	Tk,cr	MPa	3.6	3.6	3.6	MPa	3.6	3.6	3.6			
concrete	range B²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.5	8.5	8.5	MPa	8.5	8.5	8.5			
Dry	Anchor Category		-	-	1	1	1	-	1	1	1			
	Resistance modification factor		$R_{d,}R_{ws}$	-	1.00	1.00	1.00	-	1.00	1.00	1.00			
Red	uction for seismi	c tension	αN,seis	-	1	1	1	-	1	1	1			

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Fractional and Metric HIS-N and HIS-RN **Internal Threaded Insert**

Bond Strength

Diamond Core Bit

TABLE 31—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL AND METRIC HILTI HIS-N AND HIS-RN INSERTS IN HOLES CORE DRILLED WITH A DIAMOND CORE BIT1

DESIG	DESIGN INFORMATION			Units	Nominal bolt/cap screw diameter (in.)				Units	Nominal bolt/cap screw diameter (mm)				
					3/8	1/2	5/8	3/4		8	10	12	16	20
Embe	Embedment			in. (mm)	4 ³ / ₈ (110)	5 (125)	6 ³ / ₄ (170)	8 ¹ / ₈ (205)	mm (in.)	90 (3.5)	110 (4.3)	125 (4.9)	170 (6.7)	205 (8.1)
and Water Concrete	Temperature range A ²	Characteristic bond strength in uncracked concrete	Tk,uncr	MPa	8.3	8.3	8.3	8.3	MPa	8.3	8.3	8.3	8.3	8.3
concrete an	Temperature range B ²	Characteristic bond strength in uncracked concrete	T _{K,uncr}	MPa	5.7	5.7	5.7	5.7	MPa	5.7	5.7	5.7	5.7	5.7
col	Anchor Category		1	1	3	3	3	3	-	2	3	3	3	3
Dry	Resistance modification factor		R _d , R _{ws}	-	0.75	0.75	0.75	0.75	-	0.85	0.75	0.75	0.75	0.75

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

 $^{^{1}}$ Bond strength values correspond to concrete compressive strength f_{c}^{\prime} = 17.2 MPa (2,500 psi).

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F).

Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

and 55.2 MPa (8,000 psi), the tabulated characteristic bond strength may be increased by a factor of:: $(f_c / 17.2)^{0.25}$ for uncracked concrete [For pound-inch $(f_c / 2,500)^{0.25}$]. 1 Bond strength values correspond to concrete compressive strength f_c = 17.2 MPa (2,500 psi). For concrete compressive strength, f_c , between 17.2 MPa (2,500 psi)

² Temperature range A: Maximum short term temperature = 55°C (130°F), Maximum long term temperature = 43°C (110°F). Temperature range B: Maximum short term temperature = 80°C (176°F), Maximum long term temperature = 43°C (110°F).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

Conditions of listing:

- 1. The listing report addresses only conformance with the standards and code sections noted above.
- 2. Approval of the product's use is the sole responsibility of the local code official.
- 3. The listing report applies only to the materials tested and as submitted for review by ICC-ES.
- Anchor sizes, dimensions, minimum embedment depths and other installation parameters are as set forth in this listing report.
- Anchors must be limited to use in cracked and uncracked normal-weight concrete and lightweight concrete having a specified compressive strength, f'_c, of 17.2 MPa (2,500 psi) to 58.6 MPa (8,500 psi).
- 6. The values of f'_c , used for calculation purposes must not exceed 55 MPa.
- 7. Limit states design values must be established in accordance with this listing report.
- The use of fatigue or shock loading for these anchors under such conditions is beyond the scope of this listing report.
- Anchors may be used to resist short-term loading due to wind or seismic forces in locations designed according to NBCC 2015.
- 10. Where not otherwise prohibited in the code as referenced in CSA A23.3-14, Hilti HIT-RE 500 V3 Adhesive Anchor System are permitted for use with fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:
 - a. Anchors are used to resist wind or seismic forces only.
 - b. Anchors that support a fire-resistance-rated envelope or a fire-resistance-rated membrane are protected by approved fire-resistance-rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - c. Anchors are used to support nonstructural elements.
- 11. Use of zinc-coated carbon steel anchors is limited to dry, interior locations.
- 12. Use of anchors made of stainless steel as specified in this report are permitted for exterior exposure and damp environments.
- Steel anchoring materials in contact with preservative-treated wood and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- 14. Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program, and the certification shall include written and performance tests in accordance with the ACI/CRSI Adhesive Anchor Installer Certification program, or equivalent in accordance with CSA A23.3-14 D.10.2.3. The installation shall be continuously inspected during installation by an inspector specially approved for that purpose. The special inspector shall furnish a report to the licensed design professional and building official that the work covered by the report has been performed and that the materials used and the installation procedures used conform with the approved contract documents and the MPII in accordance with CSA A23.3-14 D.10.2.4.
- 15. Anchors shall not be used for applications where the concrete temperature can rise from 40°F (5°C) or less to 80°F (27°C) or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building facade systems and other applications subject to direct sun exposure.
- 16. Anchors may be used to resist tension and shear forces in floor, wall, and overhead installations only if installation is into concrete with a temperature between -5°C and 40°C (23°F and 104°F) for threaded rods, rebar, and Hilti HIS-(R)N inserts. Overhead installations for hole diameters larger than ⁷/₁₆-inch or 10mm require the use of piston plugs (HIT-SZ, -IP) during injection to the back of the hole. ⁷/₁₆-inch diameter holes may be injected directly to the back of the hole with the use of extension tubing on the end of the nozzle. The anchor or post-installed reinforcing bars must be supported until fully cured (i.e., with Hilti HIT-OHW wedges, or other suitable means). Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance. Installation in concrete temperature below 5°C (41°F) requires the adhesive to be conditioned to a minimum temperature of 5°C (32°F).